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PREFACE

The extensive sampling theory paper was written after the USDA granted the author a sabbatical
scholarship at Texas A&M University in 1965 to work under Professor H.O. Hartley in multiple
frame theory and J.N.K. Rao in sampling theory. The purpose of this account of theory is to
supplement lectures in developing the building blocks of sampling, as are likely to be needed in
applied theory. Several contrasting approaches are used in showing how the theory may be
developed. The logic of these alternative derivations of the basic theory and formulas is to provide
the student with greater exposure to different derivations in estimating parameters is frequently
helpful in complex designs since sometime there is an easier approach.

The elements of the theory covered herein might be found in either a beginning or advanced
sampling theory course, but the goal is to present the topics at an introductory level assuming only
some previous exposure to sampling methods for motivational purposes. In addition, some limited
background in mathematical expectation and basic probability is helpful.

This particular effort is largely the result of the direct influence of H.O. Hartley and J.N.K. Rao
who stimulated work and interest in sampling by their teachings. The influence of writings by
Cochran, Hendricks, Des Raj, Jessen, Hansen, Hurwitz, and Madow have also been substantial. In
addition, many papers have influenced both the point of view adapted as well as the material
presented. I acknowledge these sources and others which I may have unintentionally omitted. This
presentation is intended for the student working at the Masters Degree Level who may only take a
one term course in the theory of survey sampling.

Special thanks are due to Mrs. Sue Horstkamp and Mrs. Mary Ann Lenehan for their excellent
typing and help in completing this monogram.

HAROLD F. HUDDLESTON
Washington, DC
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Chapter 1. Probability and Expectation

Introduction

Since probability forms the basis of sampling theory, we begin with
a presentation of some results used in sampling. This topic is followed
with some of the important results on expected values. Both topics in
the context of sampling relate to all types of populations and parameters,
thus the classical theory of sampling is regarded as distribution free.
However, confidence interval statements about the sample statistics do
assume that their derived distributions are known. In practice, reliance
is placed on the central-limit theorem and estimators which approach
normality.

Modern sample surveys are multicharacteristic (multiple content
items) in practice and it is fréquently not practical to use many of the
results available from general estimation theory. Consequently, the use
of specific distributions and the method of maximum-likelihood are gen-
erally not considered. Likewise, an estimator which is .cheaper or
operationally easier to handle, is frequently preferred to another which
requires considerable computations and may have a smaller variance.
However, it is not correct to assume that more powerful estimation theory
can not be employed to good advantage where they are appropriate and
there is a high level of expertise and resources available for their use
in surveys.

Sample Space and Events

We are concerned with random samples or experiments in which the
outcome depends on chance. The sample space is made up of elements which
correspond to the possible outcomes of the conceptual experiment. The
elements depend on the sample and frame sizes together with the prob-
ability selection procedure. The outcome of the sample selection, with
the associated observed characteristics, correspond to one and only one
elenent of the sample space(S). An event is a subset of S. The event E
occurs if the outcome of the experiment corresponds to an element of the
subset E.

Event E = aggregation of all points containing E
Event E = all sample points not contained in E is called the

complementary event
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Event E.4E, = The totality of sample points contained in either E

172
Ey (Ey*E,
Event E..E, = agpregation of sample points contained in both of the

1°72
events El and E (El 2

The events El and EZ are mutually exclusive if they have no points in

101’

is called the union, i.e., E UEZ)

is called the intersection, E nEz)
common,

It is convenient, often, to speak of the union or intersection of
an infinite, but countable, set of events; or a set of events as being
countable. 1If only a finite number of positive integers is used in this
counting, the set is countable -and finite. If ail positive integers are
used, the set is infinite, but countable. An event is associated with a
particular integer by setting the Integer as a subscript on the symbol
for the event. Thus

Al’AZ"""’AN-l’AN is countable and finite set of events; while

l’ 2,.............represents a countable and infinite set of events.
Probability

To each element in S is assigned a number, P(ei), called the prob-
ability of e, which depends on the model used in setting up the experi-
ment, subject to the restrictions:

(a) ZP(ei) =1 or P(S) =1

(b) P(e ) >0

(c) P(e j) u P(e ) + P(ej

If E is any event, then 0<P(E)<l. The values 0 and 1 do not imply

) 143

either an impossible event or a certain event. This is the result of
some elcments of S being assigned a probability of 0. In problems in-
volving uncountably infinite sample spaces there must exist events that
are not impossible but yet have probability 0. If we insisted that the
probability of each element in the space be positive, i.e., P(ei)>0, then
only an empty event would have probability 0, and only the whole sample
space would have probability 1. The assignment of probabilities to the
elenents in the space may vary for different real-world situations to
which the fheory is applied.
Some Basic Laws of Probability:
If A is a random event, we write P(A) for its probability. In terms
of the elements in the probability space S, P(A) is the ratio of the

/
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number of elementary events (elements of S) favorable to A divided
by - the total number of elementary events.

Law of Total Probability (Pairwise Independent events). The prob-

ability of the union of a countable set of mutually exclusive events
is the sum of their probabilities.

N
0)) P(UNA ) = I P(A,) sets are countable and finite,
1% =1 i
") P(UQA ) = T P(A,) sets countable and infinite
11 1=1 1

Certain theorems are consequences of the above law.
A. If A and B are events, and if AcB (A subset of B), then P(B-A)

= P(B)-P(A)
B. P(A) = 1-P(A) for every event A,
C. P(0) =0

D. If A and B are events, and if AcB, then P(A)<P(B)

E. If Al,Az...are events (not necessarily mutually exclusive)

P(UIAi) 51§ P(A,)

1

o0
F. If B,, B,...are events, {f B,<B,c and ifB = B, then

P(B) = 1lim P(B

140

R
00
G. If Bl. Bz...are events, if 319323 and if B = nlni. then
P(B) = 1lim P(Bi).

{400

Lawv of Total Probability (Arbitrary random events). Let Al, AZ""AN'
where N>3, be arbitrary random events.
N N N

N N+1
(2) PYA) = I P(A) - EPAA) +IPMAAA)+ DTRMA,. A
e N T B M T 1'% 12

(There are N terms in the expression with each term smaller (or equal
to) than the preceding term). The terms after the first involve com-

pound events which will be discussed below.
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Compound Events and Probabilities:

If two events A and B occur simultaneously (joint occurrence),
then we have a compound event. In terms of sets, we write
AuB = AB + AB + AB = A + B - AB.
In terns of probabilities, we write based on (2) above
P(AuB) = P(A) + P(B) - P(AB), or based on (1)
P(AuB) = P(AB) + P(AB) + P(AB). since AB, AB, and AB are non-
overlapping sets. The above partitioning of sets generalizes
to compound events involving N arbitrary sets.
Compound Probability. If A and B are any two events, their joint
probability is P(AB) = P(B)P(A/B)=P(A)P(B/A), or

P(AB) = P(AuB)-P(AB)-P(AB); for N events
(3) PAJA,...AY = P(Al)P(AZIAl)P(A3|A1A2)...P(AN]Al...AN-l)

where we define P(A|B), P(AzlAl), P(A3IA1A2) etc. as condi-
tional probabilities; or restated'(3) becomes

(3°) P(AJA...A) = P(AA .. AL 1) P(AC[A LA, ..AL ).

Conditional Probabilities. If we consider two events A and B,

we mean by the conditional probability of A given B that we have
redefined the sample space to be only those elements contained in
event B, where B is a subset of the sample space S. Consequently,
we define

(4) P(A|B) = ZCAB)

P(B)
P(AB) = P(A|B) P(B) = P(A) P(BJA) even if P(A) = O or P(B) = O.
The conditional probability P(AIB) imrlies that the event A is

if P(B) ¥ 0, and immediately we have

of interest only if B has occurred; however, we can define

P(A[B) in (4) in terms of the probabilities in the total sample

space S. That is, for three events from the same sample space S
P(A1A2A3)

47 PUA) AA9) = Ty

Bayes Theorem. If the events Al, Az...satisfy our previous assump-

tions and P(B)>0, then the posteriori probability of A1 given B has

occurred is
P(Ai)P(BIAi) P(Ai)P(BIAi)

P(B) - EP(A)P(A [B)
a priori probability.

(5) P(AiIB) = where P(Ai) is called
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Independent Events. Two events A and B are said to be independent

events if and only if
(6) P(AB) = P(A)P(B), otherwise they are said to be dependent;
and for K events

6" P(AlAz...AK) = P(AI)P(AZ)...P(AK).

1.3 Samples and n-Tuples

A basic tool for the construction of sample description spaces of
random selection is provided by the notion of an n-tuple. An n-tuple
(Zl,Zz,...Zn) is an array of n symbols with first, second, and so on up
to the n component. The order in which the components are written is
of importance since sometimes we wish to speak of ordered n-tuples.
Two n-tuples are identical, if and only 1f, they consist of the same
components written in the same order. The usefulness of n-tuples
derives from the fact that they are convenient devices for reporting
the results of a drawing of a sample of size n.

(a) Sampling with replacement - The sample is said to be drawn
with replacement (W.R.) if after each draw, the unit selected
is returned to the frame so its chance of selection is the
same in each successive draw as on the first draw.

(b) Sampling without replacement - The sample is said to be drawn
without replacement (W.O0.R.) if after each draw the unit
selected is removed from the frame so its changes of selec—
tion become zero in each successive draw.

The basic principles of combinatorial analyses are useful in count-

ing sets of n-tuples for various values of n that may arise.

The size of the set A or ordered n~tuples is given by the product

of the numbers N),N,,...N_, or Size (a) = NNy o N
vhere Nl = number of objects that may be used as the first component,

N2 = number of objeccts (if it exists) that may be second components,

Nn = nunber of objeccts (if it exists) that may be the nth com~
ponent of the n-tuple.
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The number of ways in which one can draw a sample of n objects
from M distinguishable objects is: M(M-1).....(f-n+l) or TﬁgéiT if
sanpling is done without replaEement, and M" 1f the sanmpling is done
with replacement, An important application of the foregoing relations
is the problem of finding the number of subsets of a set.

The number of subsets of S of size K, multiplied by the number of
samples that can be drawn without réplacement from a subset of size K,

is equal to the number of samples of size K that can be drawn without
N:

replacement from S itself, or XK.K! = =

1
Therefore, XK = EngfEYT - (z) + These quantities are generally

called the binomial coefficients where the binomial form is (a+b)N.
From these coefficients, one may determine how many subsets of a

set of size N that can be formed.

(g) + (’;) + (g) Foeene ot (:) - F

Thus, the number of events (including the impossible event) that
can be formed from a sample description space of size N is 2N (i.e.,
Power set.

Another counting problem is that of finding the number of partitions
of a set of size N into setsS=(1,2,...N). Let r be a positive integer,
and let Kl’ Kz...,Kr be positive integers such that K1+K2+..-.+Kr = N,
we speak of a division of S into r subsets (ordered) such that the first
subset has size Kl' second size KZ, and so on.

The number of ways one can partition a set of size N into r ordered

- -K.- IV - -
subsets is the product(‘l> (N Ki) (N K1 K2 veenas (h kl K2"" Kr-l
K K K K
Nl
which also may be written as T
Kl-Kz....kr.

( N ') N?
= 5 i (]
Kle...Kr kl.KZ....kr.

This is known as the multinomial coefficient

where the multinomial form is (al+az+...+ar)N. For an event AK’ for K=0,1,2,

...n, where the sample will contain exactly K objects of a particular kind,
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=\
then N(AK) = (L‘w) (:_:W) where M = total objects of all kinds in the

frame, and Hw = the objeccts of the type we are interested in. Conse-
quently, the probability of exactly K objects is:

(Mw) M-, )

K n-K’

T

for samples drawn without replacement.

This is also the probability for ordered samples drawn without replace-
ment. Hovever, in sampling with replacement for an unordered sample of

size n,

M +K- 1) (H—H A+n—K-1
(r#x-1) (rrgeen

P(A) = (.‘H-n—l)
n

Expectation
By definition, an expected value is the population mean for a

parameter. Let U be a random variable taking values By (i=1,2,...,K)

K
with probability P(U=ui)(i=1....,K), ZP(U=ui) = ], Then the exnected

value of U is defined as

K
(7) EQU) = I u, P(Usp,) =T
i i
i=]
2 K 2 2 -2 2
(8) E(U™) = I My P(U-ui) = ¢° 4+ U where 0" is defined in 1.5.
i=1

A random variable is a characteristic of a random event.

Some useful propositions concerning operations with expected values
are given now

E(a) = a, if a is a constant

E(al) = aE(U), if a is a constant

E(Zu,) = LEQu,)

= M A\
E(Zaiui) iain(ui), if the a;'s are constants



Using these results
E(aU+b) = aE(U)+b, a and b are constants

K
E[p(U)) = = P(U=ui)p(ui) vhere b(U) is a function of the random
i=1

variable U.

If we have a second random variable W taking values w, (j=1,2,...1)

]
1
with probabilities P(U=wj) and I P(w=wj) = 1. The joint probability
i=1
of U and WV is given by P(Uaui, w=wj)=P(UH) where ZZP(U=ui, W=wj) = 1.
13
Also P(U=u,) = IP(U=u_ , U=w ), and
i i ]
B
P(WV-w = IP(U=p,, W=w
(o) = P (e, )

Expectation of the sum of two random variables E(U+W)=L(U)+E(W)

which we generalize to n random variables Ul’ Uz,...U\l

n
(9) E(U1+U2+...+UN) = 1ElE(Ui)

Expectation of the product of two independent random variables
(10) E(UW) = E(U)E(W), and
(11) E[fl(U)fz(W)] = E[fl(U)]E[fz(W)] if fl(U) and fz(W) are any

two functions of the independent random variables U and V.

Expectation of one random variable divided by a second random variable

U 1,
EQU) _ Cov(ﬁ,J)
E(W) E(W)

Conditional Expectation. We consider the expectation of any two

(12) EQ) =

random variables W and U where it is known that U has occurred.

W, P(U-W Uﬂui)

S T
R

;, = § W P(w=uj|U=ui).

or
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We may restate the expectation E(UV) for any two random variable.

(14) EQUW) = E[VE(V[U)] = E[UE,(W)] = E[u,ECW, |u)]
vhere E2 is the conditional expectation for a given value(s) of U
which is commonly written in this way for brevity. The RHS of (13)
may be written, for the same reason, in terms of conditional expec-
tation as E(UVW) = E1E2 where the subscripts 1 and 2 indicate the order
in which the operations occurred.
Decomposition of total expectation given in (7)

(15) E(U) = E[E(U|W)] since

K
= E[Zu P(U=yu,|W,)]
g 1%y

1 K
= IP(W,) zu (P U=y Iw )
i A
Conditional expectation is frequently easier to use in evaluating the
total expectation of a random variable in complex survey designs.
Variances and Covariances

By definition, a variance of a random variable U with expectation

U is K

(16) V) = £ (u 0% pwm)) = E@-D? - £00?) - T
i=]

2

vhere 02 is commonly used to denote V(U).

(17) V(aU+b) = a2V(U) where a and b are constants, consequently

their variance is zero.

By definition, a covariance of two random variables U and W with expec-
tation U and W is

(18) Cov(U,W) = Z(ui-U)(wJ

1,3
= E[(U-T) (w-1)] = E(UW)-E(U)E(W)

Obviously, the variance is a special case of the covariance where the

—W)P(U=u JW=w.)

3

same variable is involved.

The variance of a linecar sum L = a101+a202+...+a U of random variables

1’U2,oo . .Un is

n

(19) V(ta,U,) = II a,a Cov(U ,U,) which can be restated in terms

S IO 3

of variances and covariance as
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n
. 2
(19°) V(EaiUi) Iai V(Ui) + 2T a,a Cov(Ui,U

)
14014 13

3

19-") = Zai V(U;) +2Ifa )

G(Ui)U(U
1j>1

173 P13 i

Cov(Ui,UI)

where pij = o(Ui)o(U )

3

The covariance of two linear sums U=a_ U.+a,U +...+amUm and

171 272
W= blwl+b2W2+...+ann is

(20) Cov(U,W) = IZa
1)

The variance of a product of two independent random variables is

Cov(Ui,W )

1% 3

often needed. We express each variable (X and Y) in a more useful form.

X(X-X)

Let X = X + = X(1+5x)

>t

_§)

<!
-

(

Y=Y+ = Y(148y)

-l

(21) V(XY) = E[XY-X¥)% = (R¥)2 E[6x+sy+oxsy)?

- xD2 |

Vfﬁ) + V(g) + V(f)Y(Y)]
X % XY
(217) vaxy) = (EM 12 vx) + [EX)]12 V) + vR)VCY)

The variance of a product of any two random variables

=2 =2 = < < 2
(22) V(XY) = Y™ V(X) + X" V(Y) + ZXYEll + 2XE12 + 2YE21+ E22 - Ell

where Eij = E[(AX)i(AY)j] and AX = X-X, AY = Y-X.

An unbiased estimate of X-Y 1s given by

£2 -~ IX,y .
XY = (nxy - "7i7i) + n-1

n

The variance of one random variable divided by a second random
variable is given under Section 1.8 below.
Conditicnal Variances and Covariances

Using (18) it is easy (at least possible) to obtain the covariance

of two random variables in terms of conditional expectation. The
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covariance of two random variables U and W where they are conditioned
by H may be expressed as

(23) Cov(U,W) = E Covz(U.W) + Covl(EZU,EZN)

1
vhere Cov, (U,W) = E(UNlHj) - E(ulnj)x(wluj)

El[Covz(U,w)] - §P(Hj) Covz(YIW)

E, (V) = E(Ulﬂj)
E,(W) = E(WIHj)

Since the variance is a special case of the covariance, we may
state the variance in terms of conditional expectations using (23).
(24) Cov(U,VU) = V(U) = EIVZ(U) + VlEz(U)

Distribution of Sample Mean

Cenerally, interest centers on an estimate of the population mean
¥ with an estimate of ou being needed for probability statements on the
precision of the sample mean X (or the total NX). While unbiased esti-
mates of these parameters are readily obtained for all population based
on expectation operations, two fundamental principles are required for
making probability statements which depend on the population from which
the random variable X is selected.

Many random variables possess notmal distributions, at least
approximately. By using probability and distribution theory, it 1is
possible to derive the distribution of X when X 18 selected from a
normal distribution. The mathematical results are expressed in the
form of a theorenm.

Theorem: 1If X is selected from a normal distribution with mean u
and standard deviation o, then the sample mean X, based on a random
sample of size n, will possess a normal distribution with mean u and
standard deviation o/Vn.

The distribution of X given by this theorem is called the sampling
distribution of X because it represents the distribution of means obtained
by repeated sampling from a fixed population of X's and a given sample
size n,

The distribution of X when X is sclected from a non-normal distri-

bution depends on the non-normal distribution sampled. However, the
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Central Limit Theorem provides a satisfactory basis for dealing with
the distribution of X without being concerned about the nature of the
distribution of X for most préctical problems. This theorem states
that under very mild assumptions (the mean and variance exist) the
distribution of X approaches a normal distribution as the sample size,
n, Increases. The results of sampling experiments from many popula-
tions of X's and for small values of n (10 to 20) support tHe theorem.

Theorem: If X possesses a distribution with mean u and standard
deviation o, then the sample mean i, based on a random sample of size
n, will possess an approximately normal distribution with mean u and
standard deviation o//;—, the approximation beccming increasingly good
as n increases.

These two theorems permit one to calculate the probability that u
will lie in any specified interval by transforming the observed mean to
a standard normal distribution with mean zero and standard deviation of
one and utilizing tables of the standardized normal distribution. How-

ever, these theorem are normally used to make interval estimates about

the parameter n. The interval estimate is constructed so the probability

of the interval containing the parameter can be specified. Such inter-

vals are normally constructed so the probability is high so that the

paraneter will be in the stated interval and is referred to as the

confidence interval for the parameter. That is, X i_fgi is used to
Ve

define the upper and lower values of the confidence interval where

(1-a) indicates the probability that the parameter will lie in the
interval in repeated sampling. If the sample size is small (variance
degrees of freedom less than 30), a value t, from the Student t-
distribution is used in place of Za from the normal distribution.
Use of Approximation Techniques
The Taylor series is occasionally a useful devise for evaluating
certain expressions approximately, such as, encountered in evaluating
expectations. Since the remainder term may be evaluated in the series,
the degree of approximation can be determined.
(A) If £f(X) and its first n+l derivatives are continuous in the closed
interval containing x = a, then

n
f£(X) = £(a) + £'(a)(x-a) +....+ fnfa)(x-a)“ + R

n+l
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n+l

x
wvhere the remainder is Rn+ = lT- !a (x-t)" £ (t)dt.

1 n.
The size of the remainder may be estimated if

lfn+1 (v)} <Mwhen a <t <X

§§E30n+1
(n+1)!

x
|Rn+ll < —%T Ia (x-c)n de =

However, there exist other forms of the remainder which hold under
slightly less stringent assumptions. We may extend the version of
Taylor's formula to several variables.

This technique is most commonly used in evaluating the expres-
sion for the ratio of two random variabies or a complex function of
one or several random variables and their variances. 1In determining
a mean value for f(X), "a" is replaced by E(X) before taking expec-
tations. The expression for f(X) is squared and written as a
Taylor's series, then taking the'expectations to find Efz(X). The
variance of any function is Efz(x)hlEf(X)]z. The use of "a" = E(X)
can be justified on the basis that if E(X) is a maximum likelihood
estimator, then f[E(X)] is a maximum likelihood estimator of f(X).
Vhere X is a normally distributed variable, E(X) is the maximum
likelihood estimator. The variance of the division of one random
variable by a second random variable is given below.

First approximation

=2
U v W 2 U,W
25) v = o T (LD, VW 26v0),
W U W W
wvhich holds for n large enough so Gw = HEH <<l holds. 1If

W
W is the =mple mean (i.e., W), then the coefficiept of
variation is frequently much less than 1. The approximation
is quite good 1if Gw = ,1.
(B) An alternative way of looking at the variance of a ratio which

employs the Taylor's series is:

Let R = ED) g-, and R = & for the sample
EMW) = -
W v
R—Rx‘-i--l-'l-ay_:;ky_
w W w
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If n is sufficiently large, we may replace w by W in the denominator

so the expected bias is zero, or we may write v+ (; - ﬁ).

' Then R - R = HZRY (3 4 wiHy=l
W #.

and expand the term in parenthesis by a Taylor's series.

R - R = ¥R¥ -

~ G:ﬁ+(5:1;1)2 S
W v W
When we square this expression and take expectation we obtain an approx-
imation for the variance. This expression is complicated but it sim-
plifies if U and W have a bivariate normal distribution and provides a
means of studying the nature of the approximation. The usual (or first)
approximation is based on retaining only the first term in the brackets.
Three Sampling Schemes for Simple Random Sampling
Scheme A: A fixed number of n units is selected with equal
probability and with replacement at each draw.
Schene B: A fixed number of n units is selected with equal
probability at each draw and without replacement. Everyone of the (:)
distinct samples 5, has an equal chance of being selected.
Scheme B”: Selection is continued with replacement and with equal
probability until the desired number n of distinct units is obtained.
The scheme B and B are equivalent in the sense that the probability
of selecting a sample s is the same for both schenes, provided the esti-
mators are based only on distinct units. Usually scheme B is referred to
as simple random sampling without replacement,
Miscellaneous Results

On Expectations:

(a) E(X) =u

) E(X3) = o + 42
=2 02 2
(c) E(X)-;‘—+u

n
(@) E[EX)2] = no? + nfu?

(e) EIZaixi] = IaiE(xi), a, a cénstant

i
(f) E(Xii) ¢ E(Xi)E(i) due to dependency

(8) E(X-m)(X,-n) =014}

]
(h-k) E(a) = a, E(az) = az, V(a) = 0, and Cov(X,a) = 0

whefe a is constant
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= Ty _~C
1) E(Xi-x)(x -X) = o

3
(m) E(X.X) = o, 2
n i n u

On Identities:

n

in = Xl + X2 + ...+ xn
i

Z(Xi-X) =0

(in)2 inm= niz
L(X.-%)2 = L(X.-T)X
1 17Xy

z(xi-a)2 - z(xi-i)2 +n (%-a)2

IX,X, = 2T X, X, there are n{(n-1) values in I X, X
i3t gqg 1 ¢y 1
2 2
For N= 2, ¢" = (X1~X2) /2
X = X
i 1.
j h |
IX, . = X
g 4 .J
n
1[ x b x .x * . eN x
=1 i 1°72 n
Z(Xi—Yi) = XXi - EYi
n , n, n(n-1)
ZXI = T Xi + I XiX
1=1 1¢y 13

Double Summation:

IIX = T X = X.,
1313 4,44



ab a b a

IIX., = I (X, )= IDbX =X..

13 13 qay gm 137 4 4

b a b

= I (IX,,)= I aX K6 =X..

g=1 1=} gy d

I IX X, = IX.X
1 gt 3 gyt

1-16



Chapter II. Single Stage Sampling

2.0 Introduction

Single stage selection is.the basic building block in sampling
theory. 1In practice, there are very few surveys or experiments for which
the design employed could be called a single stage sample. Instead,
theory of single stage sampling is applied at each of several stages.
The use of stages in sampling is the result of the inability or cost of
directly selecting from all N units in the frame. Even where all N units
are accessible for sampling, the lack of homogeneity of the units gener-
ally dictate some other method of sampling such as stratification which
will give greater precision for less cost.

Two different approaches for deriving estimators of population
totals and means are presented. These are: (1) the method of weight
variables, and (2) the expectation of the characteristic value. 1In the
first case, the random variable is the weight associated with each of
the N units in the universe which depends on the method of selecting
units and the characteristic value of the unit is treated as a constant.
In the second case, the random variable is the characteristic value
which iIs associated with each of the N units in the universe. Method 1
is useful since it enables us to use standard results from infinite
population theory in constructing estimators.

2.1 Sampling With Replacement - (Method 1)

Notation

Universe of Distinguishable Units
unit 1abels—L 1’ 2’ 3’ a9 e ’i, Il...l.....N
Characteristic values Yy Yos Yas cevs Yo evencececa¥y
Weights ul, u2, u3, cesy ui, ..........uN

The weight variables are defined as

¢,>0 if the unit is in the sample ™

0 if the unit is not in the sample
N

The population total for a characteristic is: I vy = Y
i=]

where for brevity I is defined as the summation over N units; and,

mean is: Y = %

The estimator of Y is: Y = Xuiyi = I MYy



2-2

where I” is defined as surmation over the n units in the sample since

ui = 0 for the N-n units not selected.

The estimator Y has a distribution because the u, have a distribution;

i
however, the uy are not necessarily independent.
Theorem 1: A necessary and sufficient condition that EY = Y is that

E(ui) = ] since

Y = E}Iuiyi = XE(ui)yi = Xl-y1 =Y

A EZ’u

- y v
The estimator of Y is: Y = i1, Y

N N
2.1.1 Equal Probability of Selection (EPS)
The probability of selection for the ith'unit on any draw is 1 .

N
For a sample of n independent draws when n is fixed, then
n _ N-n

0 with probability 1 - N~ N
T n i |

C, with probability = = I = (C, = constant C)

i N i-lN i
. N-n n Cn

. .E(ui) "0- N +C'N N

If the estimator is to be unbiased, Theorem 1 must be satisfied, or
E(ui) =1,

. gﬁ =]lorCs= % (i.e., "expansion" or "jack up" factor)

An unbiased estimator of the total Y is:
- N NV
= = R o . —— i
Y Etuiyi Zyi E(ui) - I Yy (or " T tiyi) where

t1 is the number of times a unit is selected and v is the distinct units.

The mean is estimated by:

- v
2 Y 1N.. 1. 1V,
Y s " Nnl¥y=gllyy (oriity))

where it is clear that v < n in the above formulas.
2.1.2 Unequal Probability of Selection (VUEPS)

This implies some information (at least ordinal) is available in

the frame for each unit, besides the unit labels, which is useful in
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assigning probabilities to all units in the frame. While there may
be several different kinds of information available for each of the

N units, we shall require that the information for each unit will be
reduced to a single number X, for each of the N units. The probabil-

i

ities of selection Pi will depend on the Xi's and the selection procedure.
Notation

Universe of Distinguishable Units
Unit labels - L 1,2,3,0000000000eely.0...N Total
Characteristic value yl,yz,yc,.........yi,....yN Y
.Probability of selection Pl’Pz’p3"'"""'Pi""°PN 1
Weight ul,uz,u3,.........ui,....uN

Number of times unit selected tl,tz,t3,......-...ti,....tN n

The weight variables are defined as
0 with probability l-np1
u
i citi>0 with probability np,
where P, - the probability of selecting the ith unit

t !'-oo.t : pll'pzz"toquNN

and E(ti) = np,, and P(tl....tN) = ) "

. -E(ui) = E(citi) = O-(l-npi) + ¢ np; = NCPy

1f the estimator is to be unbiased E(ui) -]

t
P, =1 or c, = - hence u, = A
11 i npy i np,

An unbiased estimator of the total is:

L ]
« o NC

- t.y
1l » 11
Y=E Xuiyi ZyiE(ui) o X —;I—
The estimator of Y is:
1.5
% = -Y- = ————n Pi = -]-'—- z'——-tiyi
N N nN Py
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Two methods of selection which may be employed are:

(a) The Hansen-Hurwitz Method - All N values of X, known before selection

i
(1) Form cumulative sums bi of the Xi where

S, = S;_; + X, 1=1,2,.....N and S = 0.
(2) Draw a random number R between 0 and S
(3) Select the 1™ unit 1£ 5, <R < S,
(4) Repeat (2) and (3) until all n units are selected.

(b) The Lahiri Method - knowledge of X

N

5 required only for selected units
(1) Select two random numbers: one from 1 to N, called Rl’ which
identifies a particular unit, and the cther from 0 to X*, called

RZ’ where X* is the maximum value possible for any of the X, (or

use a larger value). 1
(2) For the unit corresponding to R1 determine if R2 < Xi, if so
select the ith unit; otherwise repeat (1) until a selection is
made, then
(3) Repeat steps (1) and (2) until n selections have been made in

step (2).

X N
For both schemes P, = L where S, = I X,, and N is known.
i SN N {=1 i —_—

Sampling Without Replacement - Unordered Samples (Method 1)
Notation - same as introduced in 2.1

2.2.1 Equal probability of selection (EPS)

The total number of possible samples of size n is (g). The total number
of possible samples of size n which contain a particular unit, i.e., the
itb unit, is (i:i). The total number of possible samples of size n which
contain a particular pair of units, 1 and §, 1is (::g). The probability

of selecting the ith unit is:

- ]

&)

The weight variables are defined as

n
N

0 with probability 1 - %
My 7 C, with probability %- (Ci = constant C)
. N-n n Cn
. -E(Ui) 0- N + C . N N

For unbiasedness %ﬂ =1, .. C= g-.
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An unbiased estimator of. the total is

- N N
Y = itiluiyi = Iy, EQu) = I%,

and the mean is estimated by

2y 1.,
Y=§y=alv
Both of these results are the same as we obtained in Section 2.1 for

EPS samples.

Systematic sampling using EPS-WOR technique which is convenient in

practice because of its simplicity in execution. The technique consists
in selecting every Kth unit starting with the unit corresponding to a
randon number R from 1 to K where K is taken as the integer nearest to
N/n which is referred to as the sampling interval. A sanple selected

by this procedure is termed a systematic sample with a random start.

It may be seen by an inspection of the possible units in the sample that
the selection of R determines the whole sample. This procedure amounts
to selecting one of the K possible groups of units (i.e., clusters) into
which the universe can be divided.

In addition to the convenience in practice, the procedure provides
more efficient estimators than simple random sampling under many condi-
tions. Namely, each group of K units may be thought of as being ordered
to achieve homogeneity over the universe. That is, the universe is
effectively stratified into K strata with one unit being selected from
each stratum.

In many universes the units are found already arrayed in strata
based on the proximity of the units in their natural ordering. A geo-
graphic ordering of the units frequently provide a natural stratification
wvhich may lead to a more efficient estimator than simple random sampling.
Likewise, systematic sampling over a time interval may prove more effi-
cient than simple random sampling over time.

The estimator for systematic sampling is the same as given above,

namely

2 1,
Y ” z Yi-
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However, the selection of only one cluster of K units based on a single
random start does not permit an unbiased estimate of the variance. To
overcome this difficuity, m systematic samples of size N/nm are selected
using m random starts and K = N/nm. The mean is than a simple average

of the m sanmple means for each of the systematic samples of size K. The
use of m systematic sample is referred to as replicated or interpenetrat-
ing sub-samples.

2.2.2 Unequal Probability of Selection (UEPS)

This case is very difficult to handle because of the calculation

of the probability Py and the joint probability (pij) of the ith and

jth units which vary depending on the order in which the units are
selected. We shall look at scveral types of selection procedures which

make the calculation of pi and pij manageable.

Notation - same as introduced in 2.1.2

We consider methods that use the Horvitz-Thompson estimator (HT) which
is the only unbiased estimator. Let P(s) denote the probability of
selection of a fixed number of n units without replacement, and S denote

the set of all (2) possible samples of size n.
“1 = probability that ith unit is in the sample

“ij = probability the iCh and jth units are both in the sample

Then LPl I P(s) , and LA I P(s)
sal J s3i,]
h

where the sum L is taken over all samples of size n containing the it

unit, and the sum “1j is over all samples containing the 1th and jth units.
N N N
I, =n, Zn,=(n-1)r, and LI n,, = n(n-1)
=1 1 jp1 1 1y 1

Theorem 2: A set of necessary and sufficient conditions for the esti-
R

mability of any linear function Euiyi is LI 0 if y ¥ 0.
- N
Consider the estimator Y = I ajc vy wvhere a's are random variables
i=1

defined as y
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th
{ 1 if the 1 unit is in the sample
a-
i

0 otherwise

E(ai) - O(I-ni) + lowi =T E(aiaj) = nij
For the estimator to be unbiased
1 8y
ci“i =1 or c1 = ;; hence ui = ;I

- N a

y
. Y= i'1

n

-Z'y_j___
i ti

which is the Horvitz-Thompson estimator of the total.
The mean is estimated by

a

2 y
QL SR T e |
N N 11

If the selection procedure is such that v, is proportional to Yy the

i
estimator reduces to a constant, and thus has zero variance. 1In practice

we search for measures of size xi proportional to ¥y and try to have a
selection procedure based on the X, such that m, is proportional to Xi

i i
since y, is unknown.

J

We now consider some sampling methods for which the sample estimate

of V(YHT) is non-negative. In addition, we would like to impose certain

other minimum requirements:

(a) LA proportional to Xi, vhere Xi

This is necessary for sampling efficiency.

was proportional to yi(wi-npi.).

(b) V(YHT) is always smaller than the variance in with replacement
sampling (section 2.1.2).

(c) “11 <™y tj for all i¥j. This is the condition necessary for non-
negativity of variance estimator.
(d) > 0 for all i#j. Condition for estimability.

“ij
(e) Computations relatively simple.

Methods for n = 2

(a) Brewer method - The procedure is based on construction of 'revised'

sizes X; which make

T2y, (mg =)
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(1) Select the first unit with probability proportional to the
revised sizes XI
(2) Select the second unit with probabilities proportional to the
original probabilities Py of the remaining units,
Durbin has obtained the same result for n = 2, but the method extends
for sample sizes greater than 2.
Durbin procedure for n = 2, the first unit is drawn with probability P
and the second unit from the remainder of the population
xi
FTX

= prob. (selection of j/i already selected)

N P
1 + 1 i
= p, (5= — )/(1+):_ )
1 2pi 1 Zpi i-ll Zpi

and - 2p1 (n times probability of 1 unit)

Py

np

n (n times compound probability of i + j)

19 = 2P4Py 4 ™ 2P4Py 4
(b) Murthy's Method X
(1) Draw the first unit with probability El—

IXi

X

(2) Draw the second unit with probability ﬁl————

ZXi-Xj

However, the ordering effect on Py 1s removed by considering all orderings.

The estimated total for the Murthy estimator for n = 2 is:

. 1 N P!
il -—-(l-pz) +-——(1-p1) based on the ordered estimator
P;=Pa2|l Py Py
in 2.3.1
where P, - probability that 1th unit is drawn first
P, = probability that jth unit is drawn first.
Method for Any Size n
(a) Rao, Hartley, Cochran Method (RHC)
(1) Split the population at random into n groups of sizes Nl' NZ""N

where Nl + N2 + ... + Nn = N.



2- 9

(2) Draw a sample of size one with probabilities proportional to

size from each of these n groups independently.

(3) And N = nR+K, Ni = R or N1 = R+1, 0<K<n

The unbiased estimator of the total 1is

- N N P
Y= I yu,y,= Ly, E(u,) =L~ Yi'¢
i1 i i T

i=1 pi

wvhere Pt = probability of selecting a unit from the tth group
(the probability of selecting the group), that is

e
t
P = I ry

A 51

th th
P = probability of selecting the i~ unit from the t
group (p; = P(i/t))

The probability of selecting the ith unit in the tth group Pi - pilPt

A disadvantage of this method is that there exists another estimator
which has uniformly smaller variance but this is generally considered
a .thicoretical rather than a practical disadvantage since the other
estimator is very difficult to compute.

(b) Systematic Selection
A generalization can be made from systematic sampling with equal
probabilities. Cumulate the measures of sizes of the units and

1P Xy Lo X +X,, X +X,+ 1 to

Xl + XZ + X3, and so on. In order to select a sample of size n,

a random number is taken between 1 and K = X/n., The units in the

assign them the range 1 to X

sample are those in whose range lie the random number i and all
other numbers i+K, i+2K,......., obtained by adding K successively
to i. If there is any unit whose measure of size 2X/n, it is
removed before the sample selection procedure begins and included
in the sample with certainty. The probability of the ith unit is
Xil(X/n) = np,. No simple formula for "ij can be written down.
For a specific arrangement of units, this can be calculated by

finding out which random numbers (from 1 to X/n will selected the
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th

i and jth units. If m,, is the number of such random numbers,

ij
ﬂij = nmij/X. If N is not too large, this is certainly feasible.

Thus, unless "ij

cannot be derived.

can be computed, the variance of the estimator

To insure that exactly n units, and not (n-1) or (n+l), are
selected, circular systematic selection can be used. That is, a
random number R between 1 and X is selected and nultiples of K are
added and subtracted from R to determine the n units to be included

in the sample. An unbiased estimator of the population total is

given by:
- n 'y
Y'Zﬂ—i
i=1 4

(¢) Murthy's Estimator
This unordered estimator is obtained by weighting all the possible
"ordered estimators' (given in 2.3.1) derived by considering all
possible orders of selection of the given samples with their
respective probabilities. The estimator can be shown to be of

the form

n
Ly, P(s]1)

i=]1

where P(S) is the probability of getting the Sth unordered sample
and P(Sli) is the conditional probability of getting the Sth sample

given the ith unit was selected on the first draw.

2.3 Sampling Without Replacement ~ Ordered Samples (UEPS)
For unequal probability of selection schemes, ordered estimators
have Leen used because of the ease in calculating the conditional
probabilities based on the order of selection. We consider only a few

schemes.
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2.3.1 Des Raj Estimator

(A) Caée for n = 2

For the first unit drawn we have the estimate

-~ N y y
1 1
EY Zuiy1

82791 %Y, F, 5 BBl myp + oy =Y

Considering both estimates

; ) Zl+22
2

1 1 Yo
7 L) g2+ ep) )

(B) Case for any n

Define 2, as above and

(I-P e -cnoP )
1 "2 i-1
Zi yl + Y, + y3 +...+ Yia1 + y1 Pi

n
231

)
[ ]
B3 e

vhere P, = P(i]i-1, 1-2,...1)

Since a sample of size n can be ordered in n! ways, an unordered
sample estimate can be derived by considering all n! estimates and
averaging them. Murthy's estimator corresponds to the average of

all the ordered estimates for the n units selected.

2.3.2 Midzuno System of Samplingp

The first unit is selected with unequal probabilities, and for all
subsequent draws the units are selected with equal probabilities and with-

out replacement. The estimator for this scheme is the Horvitz-Thompson
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Estimator. The initial probability of selection P, must satisfy the

i
condition (i.e., a mininum value)

n-1
P> 2D

The probability of the largest unit is maximized when the other units have
eqyual probability of inclusion. This probability barely satisfies the

minimum size condition.

N-1
P, =1- I P, where P] for the other N-1 units must satisfy
i {=1 i i
- n_l
P> D)
Hence
N-1 N-1 )
» n-l n-l
IP;> L = if all probabilities are equal.
i n(N-1)
i-1 i=l
n-1 1
Thus P, must be smaller than 1 ~ — = , or
L n n
n= 2 5 n
1 1 1
PL 2 v es s 5 ;
P = 1 4 n-1
i 2(N-1) ""°°° 5(N-1) n(N-1)

Theorem 3: For every ordered estimator there exists an unordered estimator
which has smaller variance.
Sampling With Replacement - (Method 2)

We start with an estimator of the mean and obtain its expected value
by treating Y, as the random variable. The estinmator is unbiased if the

expected value corresponds to the mean value for the parameter in the

population,
Notation:

Universe of Distinguishable Units
Unit labels - L 1, 2,3, ..., 4, .0oovey N

Characteristic value Yio Yor Ygseeea¥ aence Yy



x*

2.5

2-13

2.4.1 Equal Probability.of Selection (EPS)

n
Consider the estimator ;n ='% T Yy
i=1

n
EG ) = r.(% Iy,) = ;1\- B+ B D+ () )

. h .
where Y, corresponds to the unit selected on the rt draw. For with re-

placement sampling, the probability of selection on the rth draw, Pir’

for a unit is ;-.
N

N N Y =
Substituting this results above
nY -

E(;n) = % {(Y+Y+...+4Y}= a - Y n = terms in sum

2.4.2 Unequal Probability of Selection (UEPS)

- _1 %
Consider the estimator y_ == I ——
n n NP1
N
where IP, = 1.
i
Vi
Let 81 kv for brevity
i
N Ny N
. i 1 Y 3
E(Zi) = zpizi z X N Zyi N Y
n -

. 4 1 nY v
VO E@E) = S IE@E) === ¥

Sampling Without Replacement - Unordered Samples (Method 2)

Notation:
Universe of Distinguishable Units
Unit 1abelS"L 1, 2' 3’ s ey 1’ o'ooo'N
Characteristic value Yir Yoo y3,...,yi,.....yN
2.5.1 Equal Probability of Selection (EPS)
n
. - 1
Consider the estimator Yo * m Zyi

n
EG) =EG Iy) = = LEGD + oou + E()) + «o0 + E(Y) )
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where y; corresponds to the unit selected on the rth draw. For without

replacement sampling, the probability of the selection on the rth draw

p = N1 N2 N-rtl 1 _ 1
ftr " N " N1 " N2 " Rerdl N

N 1Yy
cE() = IPyyy sy TRty
Substituting this results above
S R oy ¥ o
E(yn) n{Y+Y+....+Y} - Y

2.5.2 Unequal probability of selection (UEPS)

Each of the methods of selection may indicate a different estimator
(see section 2.2,2) for the mean.
Sanpling for Qualitative Characteristics

We consider only sampling without replacement for equal probability
of selection schemes since it will be shown later that WOR sampling is
more efficient than WR sampling. Ve shall not consider in detail UEPS
schemes since the units either assume a value of O or 1 as a measure of
size. Consequently, it is unlikely that UEPS schemes would be considered
exceps in those situations where quantitive data was also being collected

for the same sampling units.

Notation

Universe of Distinguishable Units
Unit labels-L 1' 2. ssess ey i, o--o-,N
Attribute value al, 82’ csevey ai,....., ay
Weights vy Hos soevey My ceoney Uy

The weights are defined as before while a, is equal to either 1 or O

i
depending on whether the unit has the attribute or not.

2.6.1 Two classes - EPS

The sampling units in the universe are divided into two mutually
exclusive classes. Let p and q denote the proportion of sampling units
in the population belonging to Class 1 and Class 2, respectively. In a
sample of n selected out of N, n, units will occur in Class 1 and n, in

Class 2. The probability P(nl) is given by



(v2) (%)
___(_:_,.—-_—. . :1P(n1) = 1.

The variate n, or the proportion nlln is said to be distributed in a

P(n)) =

hypergeometric distribution. As N tends to be large, the distribution
approaches the binomial.
An unbiased estimator of the total population size is
- N
N, = E?u a, = La,E(u,) = N I’a, = !n
1 i1 i"d n i n1

based on the results in section 2.2.1, and the proportion P is estimated
[} \j
n “f' Nq' n!(-n)!
! - ! ! 1\ S : h :
1 nl.(Np nl). nz.(\lq 02) N

by considering
E(nl) - ﬁ n, P(nl) = ﬁ
1 1
IR 1
np (Np D! qu (n-1)! (N-n)!
- ' - 1 [ - t ‘_.:
N nl(nl 1).(Np nl). n,: Nq nz). (N-1)
b
"TY \M

= npl o e vhere the summation represents the probability
y ()

E(nl) =

n n-1l

that in a sample of n-1, nl-l will fall in Class 1 and n, will fall in Class
2. The sum over all values of nlfis 1.

.'.E(nl) = np

Consequently, the proportion p is estimated by
S | !
E(P) o E(nl) = and

n

E@) = =2 .

2.6.2 For K classes - EPS

(o) (sont

2T (
P by e )
(nl,nz,...nK) (ﬁ)

P(n
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K

and £ Ni = N,

ZIZ
-~

E(ni) = np, where Pi =

The total population size for the i class is:

-~

N
Ni n ni .

2.6.3 For K Classes - UEPS

We briefly consider sampling without replacement and unequal prob-
ability of selection based some measure of size related to a quantitive
variable which was observed for the same set of n sample units and used
a the basis for selecting the units. That is, as part of a multiple
characteristic or multipurpose survev. We consider only the RHC method
of sample selection. For the total number of units

N N

-~ n
Ni = Euiai = ZaiE(ui) = Zai

P
t

P

o}

n
-Zi—-t—

i i

o)

and for the proportion of units in the ith cateporv. We use fi to indi-

cate this fraction to avoid confusion with the use of P, for the prob-

th th 1
ability of selecting the 1 unit in the t group.
P . _1pile
i N N Pi '

Sampling for Quantitative and Qualitative Characteristics in Subpopulations

This sampling problem is councerned with subpopulations and is commonly
known under the title of '"Domain Theory." We are concerned with estimat-
ing the total of a quantitative characteristic for each of K subclasses

in a population where the subpopulation sizes are unknown.

Notation ~ Same as given in 2.6 except the quantitive variable Yq is also

defined for each unit in the universe of N.

2.7.1 Sampling With Equal Probabilities (EPS)

We define the quantitative characteristic for '"domain theory"

y, 1f the gth
P17

0 otherwise

unit belongs to the jth class

jn = number of Yy in the jth class

The estimated total for the jth class is

~ N N N - -
Y =—¢ = — - — EC. = Nf .
P =t vy T gV T EGM) Ry gy
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since the sample is chogen by simple random sampling from the entire
population, the subsample ,n can also be considered a random sample
from ij, hence ,y is unbiased for a given L
Inverse Sampling - (EPS)

If the proportion p of units in a given class is very small, the
method of estimation given previously may be unsatisfactory, In this
method the sample slze n is not fixed in advance. Instead, sampling
is continued until a bredeternined nunber of units, m, possessing the
rare attribute have been drawn. To estimate the proportion p, the
sampling units are drawn one by one with equal probability and without
replacement. Sampling is discontinued as soon as the number of units
possessing the rare attribute is equal to the predetermined number m.

In a sample of n-1 units The unit drawn at the

P(n) = P {drawn from N, m~1 units }P{ nth draw will possess}

e

will possess the attribut the attribute

N N
) (mljl)(ngm) | Np-ml

N N-n+l
(1)

Since the possible values of n are: m, m+l,..., m+Nq, we have

£ P(n) = 1.

n>n

An unbilased estimate of P is given by

-~ -1 -~ ~
P o1 and NP PN.

3|8

Linear Estimators and Optimality Properties

A thorough examination of linear estimatars has been underway since
the Horvitz-Thonpson paper on sampling without replacement in 1952.
Seven or eight subclasses have been proposed, three subclasses will be
considered below.

n
(1) Tl = Euryr
r=1

vhere ur(r=1,2,...n) is the coefficient to be attached to the unit ap-

pearing in the sawmple at the rth draw (no attention is paid to the unit
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label ui,) and is defined prior to sampling.

(2) T, = I8

2 171

ies
n

vhere Bi is the coefficient to be attached to the unit with the label
g whenever it is in the sample, i.e., 1 = 1,2,...N, and is defined in
advance of sampling.

n

=y (Iy,)
3 sni=li sn

(3 T

where Yg is a constant to be used as a weight when the sample s, is
n

selected and the weights Yq is defined in advance for all 5,
n

When EPS is used, the sample mean

- 1 0

y n iflyi
is the best linear unbiased estimator (BLUE) in the class Tl. The
proof rest on an extension of Markoff's Theorem. The sample mean ;
is the qnly unbilased linear estimator in the subclass T2’ and corresponds
to the methods of weight variables. It is known that there is no BLUE
in the subclass T,. However, a BLUE may not exist in a broad class of

3
unbiased linear estimators for any sampling design.



Chapter III. Multistage Sampling

3.0 Introduction

3.1

In single stage sampling procedures the unit selected was com-
pletely enumerated or observed. These uaits could have been a cluster
of people living in the same household, a section of land, a city block,
a fruit tree, an individual student, or a classroom. It is frequently
necessary for reasons of efficiency in sampling or cost to consider
multistage sampling in which only a part of a cluster of units is
enunerated. The selection of only a part of the cluster leads to the
use of multistage or subsampling designs. The number of units within
a cluster may be thought of as a measure of size. Since the y values
are fixed under the method of weight variables, only the distribution
of the i, will be affected. A design is characterized by its weight

i
variables.

Two Stage Sampling
3.1.1 Equal Probability Without Replacement at Both Stages

Notation:

Population of primary units Total
Primary number 1, 2,i00eesiyeeeseN N
Secondary Units in Primary Ml.Mz,.....,Mi,.....MN MO
Primary Weight Variables ul,uz,.....,ui,.....uN n
Primary Total 31,.32,..L..,31,.....Y§ I
Primary Mean Yl' YZ"""’Yi"""'YN YN

Secondary units for ith primary

Characteristic wvalue PR ZVSIEREET FRETETER) 19
i

vil' viz,cl‘.n'vit’.ctncviui

Weight variables

Stage 1: Select n primaries out of N (EPS, WOR)
Stage 2: Select my secondaries out of Mi (EPS, WOR)
Weight coefficients

0 with probability 1 - %
" n
Ci with probability N

m

0 with probability 1 - —=

My
it m
C ¢ vith probability M

i i



3-2

Wihecre V is correlated with Vi ., but not with the weipht in another

it t
primary, say vjt'
n n n
E@y) =0Q-9 +C y=C §

n . N
Since C1 E-ﬂ 1 for unhiasedness Ci = Y

m m m

i i i
E(W.,)=0.(1-—/—)+C, — =¢C, —
it “i it Mi it Mi
] Mi
Since Cit 1 = ] for unbiasedness Cit 5 —
i i
The estimator of the population total is
N M M
" i N | NI -
Y=E i i My Vie Yie "0 ® mi'yi- n LMYy,

where vy, is the total of the m, secondary units. Then

i

Y = N B M.y, where ? M, =M
nM, 1Y 1 0°

In selecting primary units with probabilities proportional to size,
selection with replacement is used for simplicity. In some surveys

the number of primary units in a strata or population is rather small.
In such situations, it is desirable to select units without replacement
to produce the reduction in variance associated with a finite popu-
lation correction factor. However, these gains affect mostly the
between primary unit contribution of the variance, and to a lessor
extent the within primary unit variances. Consequently, the éains in
nultistage sampling will be smaller. This 1is especially true when

the primary sampling fraction is large and the within primary sampling
fractions are small so the major part of the total variance 1is due to
the second or lower stage units. The calculation of m and ﬂij for
primary units is more manageable if N is not too large.

Rule 1: The unbiased estimator of Y in rulti-stage sampling is obtained

by replacing Yi by Y, in the corresponding unbiased estimator of Y in

i

/
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single-stage sampling of clusters (i.e. primaries) wvhen the clusters
are cormpletely enumerated.

3.1.2 Primaries Sampled With Unequal Probability With Replacement

Secondaries with equal probabilities without replacement, but
the same m, secondary units are used each time a primary is
selected. The weight variables are:

- 0 with probability 1 -~ np
i city with probability np,

where ti = the number of times a primary is selected (multinomial variate)
Py = the probability of the ith primary being drawn
t

. 1 i
0
M
and vit = { 4 E(vit) = 1 from previous section
m
i
NM t
- i 1 P __i -
T=E ﬁ Mg Vig Y4e "0 B p, 1

The use of the same my units each time a primary is selected will alter

the variance formula as compared to a sampling scheme selecting a

different set of m, units each time a primary is selected.

i

- o t

S Y 1 -~ 4. =

™ F . . MeYs

IM 0 i
i
N
where MO = XMi the total number of secondaries in populationm.

3.1.3 Primaries and Secondaries Sampled Without Replacement
Stage 1: Select n primaries out of N (PPS, WOR)

Stage 2: Select mny secondaries out of Mi (EPS, WOR)

Weight coefficients (From section 2.2.2)

{ 0 with probability l-np,
u -
i

citi>0 with probability np,
where E(ti) = np, = W, E(titj) = "ij

1
. e E(ui) ¢ mPy 1 hence ¢, = 3 ; for unbiasedness
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m
0 with probability 1 - ﬁi
Vie © : m 1
c,, with probability
it Mi
m My
E(vit) = Cyy ﬁ: = ] hence Cip ™ E; for unbiasedness
NM n M m n
> i 1 1 i i 1 1, -
Y=EZII u, V, vy == I — Iy == I =My
b S § R § 4 n i Pi mi ¢ it n P1 i’41.
- n
2 1 1 -
Y —— My
nMo Pi i1

3.2 Three Stage Sampling
3.2.1 Equal Probability Without Replacement at All Stages

Stage 1: n primaries are selected from N

Stage 2: my secondaries are selected from Hi for a primary

Stage 3: k tertiaries are selected from Ki

it for a secondary

t

Notation: is the observation in the ith primary, tth secondary,

Yith
and hth tertiary.
Weight cpefficients:

{0 with probability 1 - %
u -
i

ul

with probability N

4

n n
E(ui) 0-(1-N) + ¢ N 1 for unbiasedness

N
e ¢« C, ® —
n

i
m
m 1“1
with probability
Mi

{0 with probability 1 -
v -
it

Cit

| i
E(V,,) = 0-(1- gz) + ey, f,

|

= ] for unbiasedness

Voo, =

ic

MB 'MZ



kit
0 with probability 1- o
it
with - kit
c with probability —
ith K
it
kie k:lt
E(with) 0. (1- K ) + ek 1 for unbiasedness
it it
‘e W - El&
ith k1t
N4 K nM nm K, k
v iie NPT M fye
YoEL L Ve Wenaen "t m, K, " Yitn
i1 it
nM, n, K
) -:- oo kit Yit.
i it

3.3 Use of Conditional Expectation

In the previous sections, we have relied largely on the weighted
variable technique to derive unbiased estimators. The weighted
variable technique 1s extremely useful since it provides us with a
positive method of finding unbiased estimators for any design. How-
evar, a Sample estimator for a parameter is frequently proposed based
on certain heuristic considerations and its expectation needs to be
evaluated. It is proposed to examine several alternative estimators
for parameters previously derived to develop an appreciation for the
usefulness of the conditional expectation technique in multistage
designs. There are many situations in which the two methods are
combined in deriving an estimator for a parameter.

The total expectations are always taken starting with the last
stage of selection, and proceeding to the next higher level.,k The
effect of the conditioning event (i.e., the selection of a particular
unit at a given stage) is to permit us to treat the units selected as
subpopulations (strata) when taking expectations over the stages below
a given stage.

3.3.1. Two Stage Sampling (3.1.1 for Method 1)

We consider an alternative estimator of the mean which is based on the

average of the primary means in the sample.



i

m
" Yo

n—
Ty

B ir

2 1 n
That is: Y, = =1
l n

=R

{ i

-

2 1 - 17 -
Y, = B¢ Iy,) = E{Z I.E(yili)}

where we now treat the ith primary as a "subpopulation" by taking the
conditional expectation of the random variable Yie conditioned by the

m
random event i. Using EPS within the primary, E(§1|i)=2(i-21yit|i)-
i

R th
=1y, , the expectation over all y__ in the 1~ primary.
Mi it it

RIS .

1 n 1

Now taking the expectation over all N primaries

2 1 N_ =

Yl - E-ZYi = YN vhich is the average primary mean in the population

of N primaries, but is a bilased estimator for the population mean of the

N
XMi = M units.

0
Another estimator that could be considered 1is:
. Im
Y

2

171

H
i

which 1s based on the estimated totals for the primaries selected divided
by the number of secondary units in the n selected primary units. Both
the numerator and demonimator will vary from sample to sample due to
different secondary units being chosen. We start by taking expectations

at the lowest level or stage in the design.

n _ | n _ n
a IM E(y,|1) IMY IY
¥ =E i 1 - E 4 S O E i
2 n n n
ZMi XHi ZMi

which is now in the form of a ratio estimator. The numerator and demonina-
tor can both be divided by n so each will resemble the last estimator (?1).

The average primary total divided by the average primary size:



-

y
s n
Y, = E{E;J which based on Chapter 1 gives

Yo -
X Ey Cov(ﬁ—,Mn)
Y, = =% - L
2 ER EM
n n
N

Cov(ﬂh,ﬁn)
- -————Ti;—-— wvhich is biased unless all Mi are equal or
the covariance is zero.
3.3.2., Two Stage Sanrpling (3.1.2 for Method 1)

We generalize section 3.1.2 with regard to the second stage of

S

sampling by specifying only that the sub-sampling scheme within a primary
provides an unbiased estimate of the primary total,

The estimator proposed for the population total was:

t t
o 1 41 - 1 ;i‘
Y o z pi Miyi 5 I pi Yi
Now
t
"~ 1 ‘i -
Y = E{> 2 5 E(Yili)}
i
t
1 i
= E{=L"—Y,}
n Py i
. Y
el B =1, ny-y
n i Py n

which Is an unbiased estimator of the population total.
3.3.3. Three Staze Sampline (3.2.1 for Method 1)
The basic technique is illustrated for three stages using the

estimator derived in 3.2.1.
The estimator for the population total was:
K, k

~ g Mm K ke
Y o ia VRl Y
ooy it
nM, m K k
A RIS
Y E(n L m L k L yith)

i it
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nM m K, k
N i1 it it
=E[-I—I ——1I E/(y,. [1t)]
n 4 kit 3%¥ith
vhere
- it = -
Byryenl® = Yo, 00 Yy =y, T
or
nM m
o N i1 o
Y=E[-Z . > E(KitYitli)]
E(KitYit.li) = E, (v, |1).- Y;,,+ Vhere Y  1s the sample total
for the tth secondary in the ith primary.
n
-~ N -
Y E[n z MiYi--]
Since Mi?i-- is the total for the ith primary
n n
o N S N o N, =
Yoo DEMY )=t E,(Y,,)) =~ (n¥...)

where Y... is the average primary total
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4.1

Chapter IV. Estimatjon of Variances

Introduction

The estimation of variances is developed in terms of deriving the
expression for the population Vvariance and then seeking an estimator
of the population variance based on the sample data. An estimator
of the population total or mean require knowledge of the probability
of selection for each unit in the population or the units in the
sample depending on class of estimators being considered. The esti-
mation of variances requires the knouvledge of joint probabilities of
each pair of units as well as the probabilities of the individual
units for estimability. The requirement is that both Py and pij be
greater than zero for a finite population. Variances will be derived
for the class of estimators T1 and T2 introduced in Chapters II and
III.

Of particular importance in these derivations will be the use of
conditional expectations and probabilities, especially for multistage
sampling designs. The notation established in Chapters II and III
will be followed. It should be noted that we are concerned with the
variance of estimators and not the variance of the population charac-
teristic which was defined in Chapter I, Section 1.5 (16).

Howéver, a definite relationship between the variance of the
estimator of the population parameter and the variance qQf the
characteristic measured (or observed) in the sample does exist.
Single Stage Designs - Population Variances
4.1.1 Equal Probability of Selection With Replacement

Notation from Section 2.1.1

a. For the subclass T2 of linear estimators,

"

)
N .. N
Y Zuiyi n z 1 T h ztiyi
Taking expected values in terms of distinct units and fixed sample

size n; ti is distributed as a binomial variable.

S | n
E(ti) = n.(ﬁé X

E(tz) - n(N-1) + (9)2
i N2 N
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1,,1 n(n~1)
E(tyt ) = n(n-1)QP = ——>—
1%y NN W
n(N-1) n,2 _ n(N-1)
V(ti) Nz + ( ) (ﬁ) = -_;;?_-
{n-1) n, 2 n
Cov(t ) = B2 Oy B
i3 N2 N N2

Using (19) of Chapter I, Section 1.5

- N2 N N2 N 2 NN
V(¥) = —, V(It,y,) = [Ty V(t ) + I Zy y,. Cov(t.t.)]
2 171 2 i i i’j
1#§ *
2 N NN
N- -
= .112 [Zyi .rl_(..!_z_ll + T Xyiyj (.._’;.)}
n N i¢} N
2 N N N N N
N™n 2 2 2
N N
2
Ly, ~(Ly )2
Nzn N 2 N 2 N2 ' Ni
(1) = [Nzyi (Ey )7I= — (]
2 2
N 2 b4 N™ 2
n [EGY) = (EGOYT = Jog
b. For the subclass 'I‘1 of linear estimators
n
" N -
Y n l:yr
2 n 2 2
- N rl N 2 N 2
V(Y) nz EV(yr) nz .noy = cy

The variance of the estimator of the population total is related to 2

the variance of an individual unit of the population by the factor %

and it follows that the variance of the mean is related by the factor %u

4.1.2 Equal Probability of Selection Without Replacement

Notation from Section 2.2.1

a. Fron the subclass T2 we have



Y= Dy, =9+

since all units are distinct ti = 1, {,e. a constant.

E(u) = 1
E(ui) - %
_ N2 N2 _ N(n-1)
EQeug) = (o) @ " a@D)
N(n-1) _, _ _ N-n
Covluguy) = Tcny + = 7 a(w-D)

where the total number of possible samples of size n
N
(1) Are (n) , and

(2) Which contain a particular unit are (::i).

(3) Which contain a particular pair of units are (2:3).

Therefore N ) NN

V(g) = Iyi V(ui) + Z#ty
i#]

Cov(u,u,)

1734 ¥4
NN
—) + I Iy

n 1*j

N
2 N-n N-n
= Ly, ( 1yj(— ETETI))

N N N N
N-n 2 1 2
= == [yy - 5o (Gyp Oyy) - Lyy}]

N
N-n N 2 1 2
o =1 Yy~ R-1 (Ty;)7)

2 N
1 2
2 w1 By

=z

N
N-n 2
[ Iyg

Z|=z

N
"N-1

d

Z |
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Iys-(y )’
2
2 - LA )
N" N-n, .2
n O8N Sy

We conclude this section with a theorem on the estimability of any
quadratic function. This result is a companion to the t.eorem on the

estimability of a linear function - Theorem 2.

Since V(Y) is a quadratic function of y;, we state the necessary and
sufficient conditions for the estimability of any quadratic function,

NN
Iy

y.y, ; 1.e., estimability implies unbiasedness.
13 137473

Theorem 3: A set of necessary and sufficient conditions for the
estimability of Z):uijyiyj is:

ﬂij>0 if uij 0

} where 1¥j and ranges all N units.

wi>0 if Wy $0

i

Corollggx; The variance of an unbiased estimator of Y is not estimable

3
These conditions have been satisfied for equal probability sampling

unless T >0 for all 1 and j in the population.

and for unequal probability sampling with replacement, but are
critical assumptions in uncqual probability sampling without replace-
ment. We shall show the consequencies of this in the next section.

4.1.3 Unequal Probability of Selection With Replacement

t
A -~% ) e A Yy where the t,'s indicate the number of times

Y= Iu
Py i

a unit is selected and follows the multinomial distribution.

E(ui) = 1

(1-p,)
2 i
E("i) wp +1
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l1-p
: i
V(uiJ w,
np,p
COV(uiuJ) = - 2—11 = ~-11;
nPyPy
~ 2
V) = Iypn -1 4 Iygy G- )
i

Using (19) of Chapter I, Section 1.5

o 1 .21 1 2
VO =3y G D - @y Ay 4 )
y
1 i,2 1 2
(3) w TG - q Gy
y 02
1 i 2 Y
n Xpi(pi -0 n

Note that the subscript on 02 is a capital Y to indicate the variance
of the total of the characteristic while a small y was used in the
previous section, i.e., Y = NY.

4.1.4 Unequal Probability of Selection Without Replacement

Notation from Section 2.2.2

-

Y = LE(a,)ec,y, = L° e 3 is the HT estimator where a, = 0 or 1
177174 Ty 1
depending on whether the ith unit 1s included in the sample or not.

The variance of Y is given by

Yy y
V(a,) + L L 1 —1-Cov(a

V@) = ¢ )
b § i 41 "i ﬂj

124

E ] <
e N N

E(ai) =T E(ai) -y

E(aiaj) - “ij
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V(ai) = ni(l-ni)

Cov(a,a,) = =« -nm

1?3 13 1"4

) n, (-n )yl (=7, m)
@ vy =zt e g AL,
"7 1441 1"y 3

which is the HT expression for the variance.

An alternate expression is derived from writing V(ai) and

Cov(a j) as two terms
y2 yz
G V(Y) =T —%— E(ai) -z —%~ [E(ai)]z vzt 4 —1-£(a ,2p)
L " i jfi 17y
PR G4 1 [E(a,)E(a,)]
1§41 m “j i 3

where the second and fourth terms combine and equal Y the population

total., That is

2
y

@ VE) =t 341 ——1- Yy, - Y2
L 196 4 j 3

Next, we examine several sampling schemes considered in 2.2 and 2.3.

The Rao, Hartley, Cochran estimator in 2.2.2
RHC Py

V(§ J - E v2(§) +V

random split.

1EZ(Y) where the variance is conditioned by the

Since YRBC is conditional unbiased, i.e., E (Y) = constant
hence V(YRHC) = ElVZ(Y) since V1E2(Y) =0
- AN Y4Py
Now V(YR“C E1V2(Y) E z v (—;I—) L’E v ( > )
y Ny P Y N y y, -
where Vz(—i—ié -t 7 (—375—-- Yi)2 = 1ls Ptpt' (£- %L )2
Py i Py t<t” P Pe-

/.
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N Ye Ye-o2

=Ifa PP, - (— -
t<t” t1?ei pt p .

0 if the tth unit is not in group i

th

where a, "
1 if the t " unit is in group 1

t and t° are two units from the same group.

Ni(Ni—l)

Now Ey(ap4a, ) = Jwm-D)

y.P N,(N,-1) X y .
id it £°\2
Therefore E.V,( ) = = It PP ,( - —)
12 Py N(N-1) t<t t P, P, -
(N.-1) N ¥y
i i t 2
n n
- Zﬂi - N - ZN: -N N Yi 2
(6) or Ve = T " YO " men G0

where V(Y) is the with replacement variance in 4.1.3.

We conclude this section with an intuitive proof of the Corollary to
Theorenm 3.

Consider any unbiased estimator of the population total for n>1 (so

we have a sum), the population variance may be written in the general

form

wr) = = Tz P(s) - Y2

seS

If “i = 0 for some i and j, there is no samole containing u,6 and uj

i

so that ITZP(s) cannot contain yiyj. Therefore the coefficient of _viyj

in the lorvitz-Thompson estimator will be equal to -2,
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(n, -n. %) O-n_=» O-n.n
~13 13 - 11 -
f*i Ty Y1 Ty 13 + w1 29,4

Hence, from Theorem 3, V(Ts) is not estimable; thus the need for the
5> conditions stated on page 6 of Chapter 1I.

Multistage Designs - Population Variances

4.2.1 1Two Stage Design - EPS and WOR at both stages

Stage 1: Select n primaries out of N with EPS and WOR
Stage 2: Select m, secondaries out of Mi with EPS and WOR

Y= Iy Vv

y rewriting
{¢ i 1c 74t

=Lu LV, (y,-Y,)+ZuyY
FEEIE L e R

= T ui U1 +I uiYi
= W + B
Now = 9
V(B) = N2 a-2=2 g ¥y where ¥ = 1 gy
n N N-1 N LYy
1=1
And
Uy = i Vievie - Yy E(U) = 0
N -~ -~ )
V(W) = I V(uU) + 2 i I Cov(u,Uy,u U,)
<]
= 1EG?) v(u,)
i i
2
M m
ST
1 7

using E(ui) = (%)z.ﬁ-- g'and E(uiUi) =0

2T Cov(u,Uu,,U,) = 28 E(u,0.u,,0,)
2z 1M lg) = 2 B Ugug,Uy

4-8



Now Cov(WB) = E(WB) since E(W) = 0

= I E(w,U.u,,Y)
PR 0 i S

= I YiE(uiui)E(ui) = 0

i={
2 = 9
@ V) - 2 Z;f - ;i) si + E? (- E(Yiu:1Y)
If all M, = H
Y= gﬁ z';i
and the "large" between primary component reduces to
N o, @ D

v(B) =~ (1- %)M I

Since it is rarely possible to achieve primaries of equal size, it is

desirable to reduce this between primary component when the M, vary

considerably by either (1) changing the design, or (2) changiig the
estimator to one using auxiliary information.

4.2.2 Two Stage Designs - Vary Selection by Stages

Stage 1: Primaries sampled with UEPS and WR

Stage 2:° Secondaries sampled with EPS and WOR

Scheme A: From 3.1.2 of Chapter II1 - The same m

1 secondary units are

used each timg'a primary is selected.

- 1., %
Y=ZIfy, V, y, ==I"=—=31°V, y
iti it “1c ni it it 1t
t
1 P 1 -
n 7, MYy
p
As in 4.2.1,

Y= !iiuiUi + iuiyi =W+ B
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v 1 Yy 2 '
(B) =‘; I Pi(f— ~-Y)" by section 4.1.3

i i

VW) = % E(ui) V(ﬁi) as in 4.2.1

i
since g n2p2 .
E(Uz) = i + i -] 4 _j_'.
i (n )2 n2 2 npi
Pi pi
and as 4.2.1 Cov(WB) = 0
1 Pi ™ 1 1

In this scheme, there is variance due to
l. y variation
2. variation in primary sizes

3. allocation of different probabilities

These lest two sources of variation will cancel by choosing appropriate
probabilities.

y -

M
Choose Py = Ei’ then Fi = MYi and the primary component becomes
i

2 .
M ZPi(y1 - Y)2 which does not vary with varying primary size.

Scheme B: The subsampling is done independently each time a primary
is selected in the sample, and the subsampling permits unbiased
estimates of the primary total. The estimator of the population total
is based on all primaries whether distinct or not.

Let El and V. denote the expectation and variance over samples at the

1
first stage.

- M,y . n My
Y-%Z‘—;-—i EY-ElEZX-n—i-—i—
i Py

nY
@E. I — =Y
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V@) = EIVZ(Y) + VlEZ(Y)

" vy w2 L2t
172 1 Py n i Pi
from single stage theory. Also
- nVv (§ )
2471
V2(Y) z nsz
i
Therefore
- n V(Y,) N t1V(Y1) N V(Yi)
BV, =By L5 =B L 55— =1
np, np, i

where ti is the number of times the ith primary is selected in the

sample and V(Yi) is the variance of the estimator of Yi for the ith
primary total.

Now if an independent sample of m, second-stage units is selected

i
without replacement each time the ith primary is selected in the sample
after replacing the whole subsample (i.e., a secondary may be selected

more thadn once),

Then 2
: - -, M ™, .2
Yi = Miyi and VZ(Yi) i (1 - i )S1
i i
Hence, combining this with the between primary component
2
M m
| Y1 2 .4 1,2
9) v@) o ZPi(pi -Y)" + = (1 - Mi)si

which differs from (8) by the factor

2
q, M m
_j:. _i.(]____i..)sz.
np, m, Hi i

When the probabilities are chosen as indicated on the top of page 15
and Scheme B used, a self-weighting sample is obtained.
M

Mi , then

Bl

and %- =

If p, =
1 0

o



ul n

— z(Yi-§)2
n{n-1)m

V(YY) =
where Y = (Y1+...+Yn) in

and Yi = the sample total in the selected primary on the rth draw,

In comparing schemes A and B, it should be noted that in scheme B the
number of secondaries actually selected is a random variable which in
scheme A the number of secondaries is fixed for a particular primary.
Therefore, in scheme A, the optimum allocations can be found by equating
the actual fixed subsample sizes to the optimum values while in scheme B
only expected subsample sizes can be equated to the optimum values.

4.2.3 Three Stage Sampling

Notation from section 3.2.1
Stage 1: n primaries selected with EPS-WOR from N
Stage 2: m, secondaries selected with EPS-WOR from M

i i
Stage 3: kit tertiaries selected with EPS-WOR from Kit
I R R R T
1 4
n N kit ith
Y= I 4V

Wony
ith i1t "ith “ith

To obtain the variance of Y, write

Y=Z y, LV, W y -Y, + L yu,Y
{ i th it "ith -“ith i " i1
- Iyu,U + I u,Y
{ i1 1 i1
= W+ B where BUi = ()
and My and Ui are independent.
(Y, -¥)2
N2 n, 1 1 = 1
V(B) = Py (1 - ﬁ) Nl where Y = N ZYi

CPV(WB) = 0 as before.
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V(W) = IE(ui) V(Ui) and using the results in 4.2.1
i

Note: The pattern of the term for each stage is "expanded" by all

the stages above.

2
- M K k
v(Y) -;’:-zm—iz—“-(l-x—“-) sft+
1 1t it it
s 2
M2 w, (.Y
N i i, t
nia o) M -1 *
i1 i i
. rY, -2
{.
E-(l - E) i
n N N-1 *
where Y = i Iy (Average secondary total)
i- Ht ¢ it
§-=1l:vy (Average primary total)
N 1 i
S2 -1 L (y, .~y )2 (within secondary)
it Kit-l h ith “1it-

Conditional Expectation in Multistage Designs

The general formula
V() = Elvz(Y) + leZ(Y)

can be extended to additional stages by using the same identity to

express VZ(Y) as
VZ(Y) = E2V3(Y) + V2E3(Y)

and using formula 15 of section 1.4 to express
EZ(Y) = E2E3(Y)

Combining these two results, an expression for the variance in a three

stage design is obtained.

V(Y) = ElE2V3(Y) + E1V2E3(Y) + V1E2E3(Y)
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These same two identities can be used repeatedly to get the variance
for any number of stages by expressing the expectation and variance
operation of the last stage units in the same manner as going from a
two stage to a three stage design.

For a three stage design with equal size units at all stages, we
have
Stage 1: n primaries selected with EPS-WOR from N
Stage 2: m secondaries selected with EPS-WOR from M
Stage 3: k tertiaries selected with EPS-WOR from K

The estimator of the mean 1is:

taken over all third stage units in the n.m "strata" over the selected

primaries and secondaries

taken over all primary units in the population
N

1 Da -

N IYi Y

The variances is derived as follows:

- p e
V[E,ESY] =V, [E, — zzrsj(yij_)]



1
vl[Ean

z

1 1
(H'- ¥

Now work on E [E (Y) + V

13-

For two stages

1.1

E.V, + V.E, = =(=
nm

1°2 172

vhich for three stages bec

Ej[EVy + VoE5] =

Adding this results to tha

SZ
b4
MK

L

vy = & -3

1
n n

Or, in terms of variance ¢

1

v = ¢

where

2
51

N
.
E(Yi—Y)

-——NT— from V

o2
-1,

N(M-1)

2
82 =
NIMK
ZZZ(yiJh Yij)

NM(K-1)

2

S3 =

If n = N we have stratifie

sample of size n.

1,1
n(mk
1

1.2 .1
“ws; Y G-

from E,V_E
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nm

Iy

13

=

1 -
T iy -

(Y)] or first two terms at bottom of page

Replace the term in the bracket by two stage results:

omes
1 2
- 1R Sww

t for V.E_E

1EoE4 on page 21

A -

1 2

1
Sy

T MK

2

( MR Senw

omponents

2

1
)55

1.2 1
w2 ¥ Gk - WK

1E2E3 term

123term

from E1E2V3 term

d sanpling and m = M we have cluster
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General Formulas For Designs Where Unbiased Estimators of Primary
Totals Are Available

4.4,1 Selecting Primaries With Replacement

Stage 1: ULPS-WR

Stage 2 and lower - Sampling is done independently each time the primary

is selected and permits unbiased estimators of prirary tctals. All
secondaries are replaced after selection of units for the rth primary
selection. Note: It is possible for a secondary (or tertiary) to get
selected more than once if a primary is selected more than once.

The estimator of the total is based on all primaries whether
distinct or not, i.e., r = 1, 2,...n.

Let §r be an unbiased estimator of the population total based on
the primary drawn at the rth selection. ; is based on subsampling at
the second and subsequent stages and is such that

E (Y ) = Y and V2 (Yr) = Vr

where EZ and V2 denote conditional expectation and variance over the

second and subsequent stages. Let El and Vl denote expectation and

variance over samples at the first stage.

An ynbiased estimator of the population total is

- Y
Y= %'2"55 where Pr is the probability of the primary selected
T
at the rth draw and Yi is the 1th primary total.
- n Y 1 ® Yr
EY = 1 2 e np " El‘; z P Y
r r

using single stage results since Yr is a constant. The variance

V(Y) = E\V,(Y) + VE (Y)

Now nY N Y
(Y)-VIZE =;ZP1

from single stage theory, and

n a
V. (Y ) n
.: = 2 r =
v,(M 27 L=
pr 2r
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If we replace the whole subsample each time after the rth draw

. nv_ N %Y1 N v,
BV, =E Egh =B T 27 =1D
npg i i

vhere E(ti) = npy and t, is the number of times the ith primary is

i

selected in the sanple and Vi is the variance of the estimator Y1

for the ith primary total. Hence

N Y NV
" 1 i 2 i
v(Y) o I Pi(P - YY)+ [ —

i Py

For a two stage design with unequal size primaries

Mf mi
V, = — (1 - =5)S
i mi Mi

2
i .

4.4.2 Selecting Primaries Uithout Replacement

The estimator and its unbiased variance estimator for a design
can be provided where the corresponding parameter for the single stage
design are known. Rules can be written down by considering a very
general estimator of Y given by Des Raj (1966). Durbin (1953) pro-
posed similar rules based on using the Horvitz-Thompson estimator.

The necessary requirements for writing down rules are:
(1) An unbiased estimator ; of the ith primary total Y1 based on

i
sampling at the second and subsequent stages is available, i.e.,

EZ(Yi) = Yi'

(2) The primaries are subsampled independently in a known manner so
that E2(§i§j) = Yin and V2(§1) ] Vi w&ere V1 is a co?stant. An
unbiased variance estimator or vi = V(Yi) of V1 = V2(Yi) based
on sampling at the second and subsequent stages is available, i.e.,
Ezvi = Vi. Since V1 has to be a constant, the designs in which

subsample sizes are randon variables do not fit into this set up.
The estimator of the population total, Y, is:

- v -
YG = I ais Yi

wvhere a,  are predetermined numbers for every sample s with the restric-

tion that a. = 0 whenever s does not contain the ith primary, and v is

the number of distinct prinaries in the sample,
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Rule 1: The unbiased estimator of Y in multistage samnling is obtained
by replacing Yi by §1 in the corresponding unbiased estimator of Y in

a single stage sampling of clusters when the clusters are completely
enumerated. Note §G is unbiased if and only if E(ais) = 1 for every
i=1, 2,...N.

~

The variance of YG

V(Y) = EV,(Y0) + ViE,(¥)
v, v
= El[Zais Vi] + Vl[EaisYi]
N 2 v
= ZE(ais) Vi + V1 [EaisYi]
Therefore, knowing the variance in single stage sampling, we need only
v

E(ais) or El[Zais Vi]. Sometimes it is convenient to evaluate the latter

quantity.

2
- Yy 3_1_2 %y
V(YG) =L I (ﬂiﬂj-ﬂij)(;— - = )< + L ;I where the first term is

1 j¥d i h) i

the Yates-Grundy variance of the HT estimator.
Estimation of Variances in Single Stage Sample Surveys

The property of unbiased estimators of variances will be used in
all derivations. In the preceding sections of this chapter, we have
derived the population variances for certain schemes of sampling. For
these schemes of sampling, i1t is clear the variance exists and have the
desirable property of being alvays non-negative. Our task is to find
unbiased sample estimators of the various paramcters or expressions that

appear in the variance formulas.

That 1s of
02 in 4.1.1, or
y
2 ;
S in 4.1.2, or
y
LD ﬂij, V(Y), and Y in 4.1.4.

We start by looking at one of thc expressions for the population variance

and choose the paramcter(s) to estimate since you may have a choice if
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you look at different fornulation of the same variance formula. For

example, the population variance has the general form

2
- y y Yy
vQY) = z—%- V(a,) +I I -—i ] Cov(a,a,)
" 1361 "1 Ty 13
which was given in 4.1.4, but this may be rewritten as:
Yz Y. ¥
VD) = 35 {E(2D) - [E(a1?) + L 2 -1 (5(a,a,)-E(aE(a)))
n # ™ w i) i h|
which reduces to
y2 y y
(10) V(Y) = 2—5 E(a )+ T ;3- - E(a,a,) - 2
" 141 T8 Ty ]
since 2 y y
i 2 ] 2 2
I— [E(a))] I I —= E(a,)E(a,) = (Zy, )" = Y
wf i 1340 ™ "y 1 1
where
E(ai) = and E(aj) - nj.

Hence in (10), we need unbiased estimates for each of the three terms.

Before proceceding to develop sample estimators of the variance, we
present two general quadratic functions of the y's which will be useful.
These forms are generalizations of the results given in Theorems 2 and
3 earlier.

(11) Ll(S) = 3 cif(yi) Zticif(yi) vhere ty is a random variable defined

as 1 1f the unit Ui is in the sample and 0(zero) otherwvise.

The ci's are constants for each of the N units in the

population.

1
E Ll(s) = ZE(ti)Cif(yi) = Zﬂicif(yi) which is unbiased if g " .

For the sample estimate of Z"icif(yi)' ve need to have E’Cif(yi), or
we need to determine the coefficient of f(yi), i.e., 7
divide by LR

Hence, we divide this product by LA to obtain C, for our sample

i
estimator Z'Cif(yi). Cormonly, f(yi) is some power of ¥y and we are

ici’ and then

interested in mcments of the variable Yys i.e., f(yi) = yi .
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(12) L,(s) =17 Z° C f(yi)f(yj) =I I tyy Ci_1 f(yi)f(yj)

1 491 H 1 j#t
where tij is a randon variable defined as 1 if both the i and j units
are in the sample and 0 otherwise., The C_, are constants assigned to

1]
each pair of units in the population.

EL.(S) = I E(t

e
2 O

AR ARSI AN NREALC

For the sanple estimate of £ I w, C f(yi)f(y ), wve need to have

T ]

I’ ¢ f(y,)f(y,), or we nced to determine the coefficient of
i h

f(yi)f(y1) which must equal w Hence, we divide this product by

13 C13°

n to obtain Ci » and the sample estimator.

1] h|
The forms (11) and (12) are frequently combined in obtaining the variance.
That is, the terms

ZtiC 2 +I It

Yy , (1.e., =Ll t
1y g4

1j

and are estimated from the sample data by letting f(yi) = yi in (11)

13 C19 Y9y 13 %13 717y

and f(yi) =¥y and f(yj) = yj in (12). Hence, we must have w1j>0 if

Cij#O and ﬂi>0 if Cij = Ci ¥ 0.

4.5.1 Sinpgle Stage - EPS-WOR (Section 4.1.2, also 4.1.1)

In formula (2) of section 4.1.2, the only parameter which nmust be

estimated from the sample is S;. Consequently, we look at the sample
statistic derived as a '"copy" of the population parameter.

Theoren 4. E(si) = S: where

2_ 1 342 2 1 oL =2
Sy N—-l. E(yi—Y) and sy - -ﬁ T ()i y)

By definition .
(n—l)s2 = 2‘(yi-§)2 which we rewrite so as to replace y by ¥

inside parenthesis.,

- Z‘.’(yi-?)2 - n(§—§)2 replacing the first term by the

veighted variable representation we get
S, 2 - =2
= Lu (y~=Y)" - a(y-Y)



Taking expectations
2 5.2 -
E[(n-1)s"] = 3 I(y,-D)" - nv(¥)

= %(N-I)S2 - (1 -~ %) S2 = (n—l)S2 or the sample s; is
an unbiased estimate of 55.

2
- 1
Therefore V(Y) =-% (1 - %) 53 is estimated by replacing the population

parameter S; by the sample statistic sz. or

2
- N n, 2
v(Y) a (1- N)sy .
For this method of sampling, the sample estimator of the variance is a
"copy" of the parameter obtained by replacing ¥ by y. The results above

is also useful for the variance in 4.1.1 since o; differs from S; only

by the constant F§T which is uninportant for moderate size populations.

4.5.2 Single Stage - UEPS ~ WR (Section 4.1.3)

The estimator

~ tiy
Y=1I" and variance
np
1 2
- y 2 G
V(Y) = -l- ZP (—i. - Y)z = y— 02 = —1
n 1 Py n y n

Consider the sample quantity

t y N
stz - 2‘—£ o Y)z which we rewrite as

y nl " n Py

t y -
n - 1 i 2 2
1 5 G0 - @)

- t,y -
n1 2.2 pet JL 432 | (goyy2
n y n py
"Pi¥y Yy 2 0 a2 |
- = (;— -Y)° - (Y-Y) upon replacing the first term by
i

the weighted variable representation.
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Taking expectations

n-1 22]=N202 V(Y)-No (1- )-N202 @1

E[— =
y y n

The sample estimator is

vy = 1 nZs? N (— -n?

-1
Yy n n-1 Py

In this case the sample estimator is not an exact '"copy" of the popula-
tion variance, but differs from the form given at the beginning of this

section in that we have f}_ instead of Py-
n~1

There is an alternate form for the sample estimator of the variance where

the summation is over all different pairs in the sample:

(——- —1)
" -l - __i____i_—
v({¥) n i jii a(n-1) °

4.5.3 Single Stage - UEPS - WOR (Section 4.1.4)

1f we use the HT expression for the variance (4), we must have a
means of calculating the two terms. The two general estimators, Ll(S)
and LZ(S)’ can be used to immediately obtain the sample estimators.
The first term

wi(l-ui)Yi (1'“1)Yi
2———2———— is estimated by 2’———2————
Ty Ty
and the second term
T n ) n -m.n.) v,y
z’:{—‘L—'—‘L—YiYJ—il}by z—z__J____J_;i_.l
i j#4 1" 3 ij i 344 i" j i3

In addition, the sampling scheme must be such that 7= ,>0 for all pairs

1}
in the population if the estimator is to be unbiased.

%, and n are subject to the following relationms

1 13
N N N
IE(a,) = In, = n, and IE(a,a,) = (n-1)E(a,) = (n-1)=w
i 1 191 124 i 1
N KN

and T I 7, = n(n-1)
1 341 4
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Since the HT variance estimator is not always non-negative, it is useful
to consider the Yates and Grundy estimator of the variance for the HT esti-

mator of the total. This form may be obtained by using the fact that

I(n

15 1j~"1“j) = (n—l)wi—ui(n-ﬂi) - -ni(l-ui)

The Yates and Grundy estimator is

V(Y) =L I (w,x )( -l)
{491 L343 "y

and the sample estimator using L (S) is

- )y y

1 394 13 1 7

This expression for the variance of the HT estimator is not always non-
negative for all sampling schemes, but is the simplest of the unbiased
variance estimators which has been identified for several sampling
scheres, In addition, when all yi are gqual, the variance is zero

which 1s not the case for the HT expression for the variance.

The estimator of the variances of YRHC

n yi { n N 2 n N N y: N y:
E(Z ————) - £[E (Z )] - 2 (z F—) = I 7
Pt t t

-~

2 2 -
An estimate of Y = YRHC - v(YRHc) (by definition)

vhere v(;RHc)'is the unbiased estimator of V(QRHC)'
Hence n
- (ZN2 -N) n y: 1 .2 - ZN: N n ¥ - 2
VU = Fa-n - & 2 Yrac* Urac?? = WD P16, ™ i) ).
i

An unbiased estimate of the sample variance for the Murthy Estimator
given in 2.2.2 (c) is:

n n
1 5 I I {r(s)r(s|13)-P(s|1)P(s| ). PP —--—1)

v(Y) =
(p(5)]% 1=1 $>1 13 7y
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vhere P(Sfij) is the conditional probability of getting the Sth sample
given that the units Li and Lj have been selected in the first two draws.
A result which will be useful in multi-stage sampling is given here

to indicate a general method for estimating the variance.

Rule 2: Find an unbilased estimator of the variance for the single-stage

design. Obtain a "copy'" of it by substituting §i for Yi (primary total).
Also, find a copy of the estinator of Y in single-stage sampling by
substituting vy for Vi. The sum of the two copies is an unbiased
estimator of the variance.

Estimation of Variances in Multistage Sample Surveys

4.6.1 Two Stage Designs - EPS and WOR at both stages (4.2.1)

In formula (7) there are two terms to be estimated. We rely on
the results from single-stage theory and use conditional expectation.
From 4.2.1

2 = 2
- M m 2 (Y.-Y)
N i 1,.2 N n i
(13) V(YY) p Zmi (1 - Mi)Si + o (1 - ﬁ) pX N1
consider
SO S U
a1 LD = I LMy oY)

since we observed in single-stage using EPS-WOR sampling that the sample
"copy" provided an unbiased estimator.

We consider the conditional expectation for a given set of Vi
which implies M

t
are fixed and seek to derive the between primary

171

component., Rewriting in weighted variable notation, we have

1 .. n = oy 2 v = 1 -
vy i LT (Miyi Y)" where Y . Z'Miyi

. 1 oo, = 2.2 1 - 2.2
1t 1
1 2-2 =2
N-1 & Myyy - WY

i
Now E?‘z = V(?’) + (E?’)2 (by definition)

and V(?') - li ZMi V(;i)
N i



2
S
T N -2 Y S G- SR NS It S O ¥,2
« « E o1 - (1 i Y- N-1 ZHi (1 N)(1 Mi) ) + Nol '[.(Yi N)
2
1 2 Yy s, Y
(14) = M V(y ) + IM] == ~ NV(Y*)~N —
N-1 i 1,2
M N
2 i
_ m, Si
since V(yi) = (1 - q—) o This accouats for the between primary
) i
2
component except for the factor N (1 - —)

We now estimate the within primary component of V(Y) minus the second

term in (14) which has arisen. M2 o
To estimate the first term of (13) use ZIup i Q- —19
im M
2 i i i
My ™2
expectation I — (1 - 7=)S, based on single stage results.
m M i
i1 i
So N 2 n, 2 R
v(Y) = E

i which has

y -x-)?
“‘i a- E)S UERCIERL I
is an unbiased estimate of V({), and a "copy" of (13). However, the
magnitude of the between term is the same as in V(§) since it is summed
over n and divided by n-1 while the within term is summed only over n
and not N.

4.6.2 Two Stage Designs -~ Selecting Primaries With Replacement (4.4.1)

We examine the general estimator described in (4.4.1) and state the
following theorem.

Theorem 5: An unbiased variance estimator of Y is
1 n ¥y

n({n-1) Z(SI

v(¥) = - )2

where ‘A is the primary total and Py the probability of selecting the

primary in WR sampling. ;
Since each of the n estimates, i.e., Fi , of the population total
i

are independent.

~

- y
v(y) - 2 vih

but - 1 - - -
y b4 y y -

i 1 i 1 i,2 1 i
VED) = BTG - 2 SR e o (5 - Y)

Pi n-1 Pi n Pi n-1 Pi
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1

S v(Y) = m

.y -
G - 02
i
4.6.3 Two Stage Designs - Selecting Primaries Without Replacement

(A) Ve now examine the general estimator given in 4.4.2. Using L2(S)
for the first term and Theorem 4 for the second term with EPS at the

second stage.

. " oW, -7 y y s
vy =57 rr A Ayt ooyt et
i j¥d ij i 3 i

When sampling is with equal probabilities at the first stage

. n(n—l)
13 ~ N(N-1)
and
", =2
i N °
n N-n 1
In this case ﬂi"j 11 "X [—ﬁ_ . E:I]>O’

hence the variance is always positive.

(B) Ve now examine the estimator ?1 discussed in section 3.3.1 which

was shown to be biased unless all primaries were of the same size.

2 )
Yl n L yi-

An unbiased estimate of the bias is provided by

or is the average of the estimated primary means.

It follows that an unblased estimate of the population mean is obtained

from the primary means by

s s N-l 1 - < - s
Vedy+ o5 S T G )

These results on the bias will be required for the mean square error by
adding the bias squared to the variance,

To find the variance

VA =V (E,( | n)] + E (V3 [n)]

Using (7) of section 4.2.1, modified for the mean (i.e., division by N2)
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vip ~ta-Bdelola-y sl
™y i
since ?1 and ;i are unbiased estimates of ?N and ?i.
h
Y eres2 a1 §(§ 3,
b N-1 i N
and
M
s2 2

1 -
1M1 Iy 4-Yy)
The sample estimator of the variance based on 4.2.1 page 39 is a "copy"

of the above population variance

vy =ia -Bsd el ——osz
n
et i
and the estimated mean square error is
1

3 3 1 . = yo _5 2
M.S.E.(Y)) = v(Y)) + [§§ c g IO MO) (v

4.6.4 Three Stage Sampling - Unequal 1lst and 2nd Stage Units with
EPS-UIOR sampling at all stages (3.2.1)

Consider the unbiased estimator of the mean

~

o
Zi it
it 1
As pointed out in 4.3.1

¥ - it

=
| el e B~ |
Sl.?'-

[y

yith

124
=gl I

v (Y) = E2 3(Y) + VzE(?). hence we can extend the results any two

stage design to get the variance for a three stage design where the first
stage contribution to the variance will be unchanged. Since simple random
sampling is employed at each stage, we may repcatedly apply Theorem 4 and
write the variance of the mean from 4.3.1 by dividing by Nz or in terms

of means at each stage as below:
2
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t
and the subscripts 1, 2, 3 indicate the stage which gives rise to the

contribution to the variance, and Wi and vij weights based on the number

of third stage units in the primary and secondary.

- Jotal No. 3rd stage units in the itﬁgprimagx
i Average No. 3rd stage units per primary

- No. 3rd stage units in the jth secondarv and ithgprima:z

vij Average No. 3rd stage units per secondary in the ilR primary

Effect of Change in Size of Primary Units
We consider a special case in which all primary units have the same

number of secondaries; that is M, = constant = M. We also suppose that

i
the primary units can be combined to give N : C new primary units of

size C'M. The variance of the mean of the original population with N

primaries and M secondaries can be expressed as

2
(A) V@) = 5%@*-%; [ - %%%5%% + P

(N-n)m
(N-1)M

a1y - BBy

and for the variance of the altered primary size

2
oY - NM-1 S~ _ m(n-1) N-nC m_ 1y _ MC-m
B V'O =g m 1 nmeo * Palvee me M6V - e Y

Subtracting (B) from (A) we conclude that
- = >
V(y) - V7(y) -0

whenever P1 > Pz provided both P1 and P2 are positive, and where Pl and

P2 are the intra-class correlation within the primary units. That is,
a gain in precision is brought about by enlarging first stage units

vhenever the intra-class correlation (1) is positive and (2) decreases
as the size of the first stage unit increases. Also the smaller P

2
the larger is the gain.
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Chapter V. Stratified Sampling

Introduction

We have studied schemes of selecting sampling units from the entire
universe in order to estimate the mean or total. If the population
characteristic understudy is heterogenesus or cost limit the size of
the sample, it may be found impossible to get a sufficiently precise
estimate by taking a random sample from the entire universe. In prac-
tice, the main reasons for stratification are: (1) variance considera-
tions, (2) cost constraints, and (3) the need for information by
subdivisions of the universe (i.e., States, counties, size groups, etc.).

We suppose it 1s possible to divide the universe into parts or
strata on the basis of some characteristic(s) or information which will
make the parts more homogeneous than the whole; that is, information
must be available for classifving each sampling unit in the universe
into more homogeneous groups or strata. As a result, it should be
possible, by properly allocating the sample to the strata, to obtain
a better estimate of the population total. Therefore, we propose to
answer as best we can the following questions in this chapter:

(1). low should the sample data be analyzed?

(2) How should the strata be constructed?

(3) How many strata should there be?
and in Chapter VIII, we answer

(4) How should the total sample be allocated to strata?

This treatment of stratified sampling is somewhat brief and a
departure from the more detailed development generally given. However,
the theory 1is largely a straight forward application of the theory
previously developed for the entire universe, but applied to fndividual
stratum. These results are confined to a single survey variable but it
should be realized that in practice surveys are multivariate in nature.
We have attempted to setforth only the principles to be considered
since there. 1s either appreciable "art" involved in applying the
techniques in practice or considerable prior data i{s required to apply

the theory directly for multivariate surveys.
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Estimation in Stratified Sampling
A universe of N units 1s divided into L strata so each unit is

in one and only one strata where the hth stratum contains Nh units

L

with a total Yh for the survey characteristic y, and ZNh = N. In

each strata a probability sample is selected, the sampling in one
stratum being independent of the sample selected in the other strata.
Let Y. be an unbiased estimate of Y

ha h’
let V(Yh) be an unbiased sample estimate of the stratum variance V(Yh).

based on a sample of size n 3 also

Applying the theory derived in Chapter II, III and IV to strata, we have

L. -

. O A | 3
(1) YS = XYh , and YS -3 L WX b Nh Yh ’
2
- L . L N - S
@ VA =1V = 1N (Al b
h "h
- a L. . L N - 2
() VA =TT = I ad (A £
h "h

That is, the estimates of the strata totals and variances add up to the
population total and varilance for each characteristic. Thus, no new
principles are involved in analyzing the data 1f estimates can be made
within each stratum. Of course, the usual relationships hold between

2 and N2 in

the variances of totals and mcans based on the division by N h

(2) and (3) for the universe and individual strata respectively.
Formation of Strata
1f we look at the difference of the variances for Y and Y. or Y

S

and ?S using EPS-WOR sampling, we have

LN -

= = N-n _.2 h nh 2

V{iY) - V(Y.) = — S8 " - —— §
S nN nhNh h
where 2
LNS LN

2 h™h h ,5 3.2

S I N + I N (Yh—Y)

From this last equation, we can sce that the smaller the values of Sﬁ ’
the smaller the variance will be. Also, the larger the differences in
the strata means, the larger 82 will be, and the gain in sampling from

a stratified population over sampling from the entire population will
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be increcased. Thus, if all prior knowledge, statistical judgment, and
available data can be brought into play to achieve similarity within
strata and increase differences between strata, a reduction in variance
can be obtained. The best information for stratification is usually
data on the characteristic y being estimated for some previous time,
However, a search is usually necessary just to find some wvariable which
is highly correlated to y, possibly from a previous census. Commonly,
a geographic or political subdivision information may provide the only
basis for forming strata.

5.2.1 "Exact" Solution

1f the distribution of y is known from previous data and a given
method of allocating the sarple to the strata is specified, the variance
to be minimized 1s a function of the strata boundaries or division
points. Consequently, the boundary points will have to be found by
iterative procedures until a minimum variance for the population
characteristic is obtained. With a high speed computer, this type
of solution is feasible though seldom known to be applied.
5.2.2 Approximate Solution

A solution due to Dalenius and Hodges is based on the argument
that the distribution of y within strata can be assumed to be rectangular
if the number of strata are large. This means that the points Y (strata

boundaries) are to be obtained by taking equal intervals of the cummu-

latives of Vf(y) (i.e., square root of cunm. frequencies). Ekman pro-~
poses that the points i satisfying

N
e (yh-yh_l) = constant

will provide approximately the optimum points of stratification. The
above is applicable when the unbiased estimator for §S is used, While
these approxinate procedures are iterative in nature, they readily yield
solutions with a conputer. The necessity of having the frequencies of y
by size available for the population of sampling units is seldom realized.
At best, a variable x which is highly correlated with y is all that is
usually available, 1In geographical stratification, the selection of
strata boundaries is less amenable to mathematics and are usually based

on available data.
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Number of Strata

In 5.2.2 the procedures require a large number of strata which for
a given sample size implies L cannot exceed n, if all strata are to be
sampled. Many survey statisticians favor the use of this large a number
of strata. However, when the stratification for y is made on the basis
of another characteristic x a large number of strata may not bring about
a proportionate reduction in variance. At best, as L increases the

variance decreases inversely as the square of the number of strata, i.e.,

L N
when the L strata are of equal size based on y, with ﬁh = %-and n = %-.
Letting L = % would appear to be a useful upper limit on the number of

strata (See 5.5). With a related variable x and a linear relationship
between x and y, Cochran gives some evidence that little reduction 1in
variance is to be expected beyond L = 6, When geographic areas or
political subdivision are used as strata, the fact that information is
needed by strata may determine the minimum number of strata. Likewise
if an increase in number of strata leads to reduced survey costs, an
increase of L beyond 6 may be advantageous.
Latin Square Stratification

This topic is also referred to as "deep" stratification or two-way

stratification. It is designed for small samples where it is desired

for the sample to give proportional representation of each criterion of

stratification. This requires that each of the N universe units be
classified into a two-way table so the frequencies of the N units in
each of the R.C cells can be determined. To achieve the proportional
representation, the sample size n leads to the construction of a two~
way table with n rows and columns derived from the R-rows and C~columns
corresponding to the two criterion for stratification. To estimate the
mean, a value for n > R.C is required and n > 2RC to estimate the vari-
ance. The work by Bryant, Hartiey and Jessen is described in detail by

both the original authors and texts on sampling.
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Earlier techniques for this problem were called controlled selec-

tion, but while these ideas were doubtlessly attractive as a means of
securing preferred types of samples they did not always lead to designs
with known precision. 1In situations where the selection between strata

is not made independently but in a dependent manner has been used by

Goodman and Kish. In this procedure the joint probability of the pre-
ferred combinations of units from two different strata (pij) is different
than zero while the non-preferred pairs have pij = 0,
Method of Collapsed Strata

As indicated in 5.3, survey statisticians favor using a large number
of strata for highly heterogeneous populations. When the number of strata
used 1is equal to n, only one sampling unit can be drawn from each stratum.
In this case, it is not possible to estimate the Variability within each
stratum. In such a case an approximate estimate of the variance of the
estimated mean is obtained. The method consists of grouping pairs of
strata whose means do not differ very much from each other. Assume that
L is an even number so we have k=L*2 pairs. Suppose the selection within
strata is EPS and Nj and Nj‘ are equal. That is, the two paired strata j

and j° are of equal size so the probability of selection is the sane.

Then consider for the variance

k
< 1 2 _ 2
v(Y) —Nz ;:nj (yj yj,)

which has expectation as follows

- 1 ko o - 2 L
(4) E[v(V)] = —ZZNj vy 4.0+ ZNj (Nj-l)S
N b I N
which shows that our variance 1s over-estimated. The extent of the over-
statement is such that it is debatable whether the smaller strata are
preferable. If the selection within a stratum is with probability pro-
portional to some variable x, then

-~ k‘ -~
v(Y) = E(Y,-Y ,)2 is likewise an over-estimate of the variance

Jjj
wvhere the capital letter Y represents a estimated total. If the above

variance (4) is compared with the variance for a sample with L:2 strata
7/
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and two units per strata, the variance (4) overstates not only the true
variance with one unit per stratum but also the variance if the strata
were twice as large. It is probably preferable to have only ni2 strata
which are larger with 2 units per strata.
Post Stratification

In sone surveys, it is not possible (or very costly) to know the
stratum to which individual sampling units belong until arter the survey
data has been collected. This technique may also be useful for a sample
that has been stratified by one factor, such as gecgraphic regions, and
post stratified on a second factor within each of the first factor strata.
The stratum size Nh may be known from official statistics, but the
stratification characteristic for the units may not be available. In
this case, a probability sample from the entire population is selected
and the units are classified into strata based on survey data collected

for this purpose.

The population total is estimated by
~ L -

Y = ENh Yh

This total (or mean) is almost as precise as proportional stratified
sampling (i.e., n, 3 Nh = constant) if the sample units classified into
each stratum is reasonably large, say greater than 20. Let m be the
number of units falling in the hth strata for a particular selection
where m will vary from sample to sample even though n is constant.
Since m is a variable while n is fixed, the variance will be increased
over stratification which is imposed prior to selecting the sample. If
n is moderately large so the probability of m being zero is very small,

an approximation of order n.2 is available. Since

N
h
LI N T B Y
nN 2 nN nN
o h , N h h
N n -2~
N
hence,
L L N-N
~ & N N-n 2 . N,2 hy .2
V(Y) =~ INS, + ) I s,

where the first term is the same as for proportional stratification and

the second term arise because the mh's are not distributed proportionally.
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"Domains"” or Subpopulations in Stratified Surveys

We discuss domain estimation in this chapter because it is an
extension of the post-stratifitation principles and the theory for
simple random sampling is a special case of the theory for stratified
random sampling. But, stratified domain estimators are not generaliza-
tion of simple random sampling. This subject is treated more fully by
Hartley (1959) in Analytic Studies of Survey Data. Where subpopulations
or "domains" are represented in all strata, we may wish to estimate the
domain total or mean. The circumstances are similar to post-
stratification in that we cannot identify which domain a sampling unit
belongs to until after the survey has been completed. However, it
differs in that Nh is known in post-stratification and can be used in
the estimators of the total and variance, but the corresponding sub-
population size is unknown in domain estimation theory. Of course, the
stratification estimator should be used if the units can be classified
before sample selection or post-stratification theory if Nh is known
but sampling units cannot be classified until after the survey.

The domain notation is indicated on variables and population
parameters by preceding the letter by a subscript j(j = 1, 2,...K) for
each of the subpopulations. Other notation is the same as in previous
sections. The strata might be geographic regions and the domains
irrigated and non-irrigated farms.

The survey characteristic is defined from the standard stratifica-

tion theory as where

37ni

h

Yhi 1f the 1" unit in the hth strata belongs in the

th
jyhi h] sub-population
0 otherwise

jnh = the number of Yhi in the hth strata belonging in the jth
subpopulation
where both jyhi and jnhi are treated as random variables.

The domain total is estimated by



L
JY - iN {i jvhi/nh}

The variance of the total is estimated by

2 -2
- L N, - y v,/
%) = 2 h h) EI " 1%hi T ¢n'™

37 b G N 1 D

v(

The sample mean is estimated by first estimating the domain size jN and

deriving the mean from

j§ = 1; which is the ratio of two random variables.
|
The domain size is estimated by first defining a '"count" variable
$¥n1 28
1 {f the ith unit in the hth strata belongs in the
juhi = jth subpopulation

0 otherwise

The estimator for N is

b

N»=f — rovided § 0.
™ P T

Hence, the mean iIs estimated by a ratio combined over strata

- Y
Y = 1:- (1.e., a combined ratio estimate)
N
]

The variance of the mean is estimated by

i} h M pDyS h Phi%h -2
vy B2 ¢ N ! GoDe D )
wvhere “h
=1h -1 -
jPh ?h and th 1 jPh .

The above theory is the direct result of substituting jyhi for Yhi in

the standard theory. The results for simple random sanmpling is obtained

as a special case when L = 1, Nh = N, nh = n, jyhi = in and jyh = jy'
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Chapter VI. Use of Auxiliary Data in Estimators

6.0 Introduction

6.1

In Chapters II and 1II the use of auxiliary data was employed or
could have been employed in selecting sampling units with brobabilities
proportional to size. 1In Chapter V, we considered employing auxiliary
variable(s) or information in the construction of strata. In this
chapter, we consider a third way in which we can use auxiliary data--
in the estimator of the population total or mean. The use of auxiliary
information brings about consideration of the use of biased estimators
of totals, means, and ratios.

The use of ratio estimators will be explored first because ratios
are of interest in two respects: (1) the ratio itself is of interest
since we may wish to know the pounds of rice per acre, or (2) the ratio
of pounds of rice produced, y, to acres of rice, x, may be less variable
than the y's themselves and hence the ratio may be utilized in estimating
production where there is a known total acreage of rice; that is, we shall
use auxiliary information to achieve higher precision based on a ratio
estimate.

As an alternative to using auxiliary information in a ratio, we can
also consider difference or regression type estimators where a linear
relationship between y and x exist. Both of these estimators may be
preferable to a ratio when the linear relationship does not pass through
the origin. 1In recent years, the discussion of biased, unbliased and
approximately unbiased ratio estimators has received considerable atten-
tion in the literature. We will discuss each of these briefly before
turning to the consideration of regression type estimators.

Ratio Estimators
Notation and Definitions:

Population of Distinguishable Units Sample
Unit labels My "2’ u3, e Total Mean Total Mean
Characteristic Yi» Yor Yqs Yy Y ¥ y ;
Auxiliary _ _
variable X1 Xyy Xq, Xy X X X x
Ratios rl. r2, r3, tN R R T
y - -
where r1 = ;1 R RM = %- and Ty ™ %
i X x
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Y or Y is to be estimated from a sample of size n, and X and X are
known exactly. To use the ratio estimator, the hypothesis 1s needed
that the relationship between y and x passes through the origin.
6.1.1 Ratio of Means

The ratio of means RM = % is the "classical' ratio and is biased
X

except under special conditions. We should erphasize that RM is an
overall rate while R is an average rate per unit in the population.
This distinction is of importance if we are interested in the use cited
in (1) rather than (2) above.

We consider the bias of Y and RM which can be found using the results
of Goodman and Hartley from the expression for the covariance of RM and
x. For EPS, we have

X X

coviZ , x) =EE . % - EDE®G)
X

Rearranging terms

EDEE) = EF) - covE , )

X x
Or

X E(ﬁu) -Y - Cov(% , X)
x

E(Ry) = R, - 2 cov , )
X x
The bias is:

B(RY = E(Ry) - R = - Cov(R, , %)

AR

which is zero if Cov(RM , x) =0, i.e., the correlation is zero.

If we express the Cov(RM , X) as po(R“)c(x) then an upper bound on
the bias can be readily found in terms of the coefficient of variation
of x. That is: .  _

- o (R Yo (x)

B(RM) ==

X
or

B(R,) 0 (%)

-—-p-

o(ﬁM) X

=~ p C.V.(x)
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Since [p| = 1, the relative and absolute bias are:

[B(R)| o (R.) o (%)
——Tfﬁ—- 2 cv.(®), and ]B(RM)[ - ——53—————
o (Ry)

Hence, if the C.V.(x) is small, the bias will be negligibly small.
We make

C.V.(X) = / 3;;—“

The bias of Y is XB(RM). In the foregoing discussion y and x may be

small by our cheoice of the sample size n.

N'wa

replaced by y and x.
The IB(iM)I is of order (%) since both o(ﬁM) and o(x) contain the
factor — .

n
An approximate expression for the bias of iH based on a-sample of size
n is obtained by retaining the first two terms of the Taylor expansion
of

E(y-R,x)
f(8) = :f——;§g;- around 6 = 0,
X+0 (x-X)
or . po(§)o(§)-RM02(§)
b(RM) = - =
X

6.1.2 The Variance of Y = VQKRM)

o 2.4 N-
V() = XVR) = 5 &R [s + RMS - WS S,
where the V(RM) was given in Chapter 1. The V(RM) =0 if y 1{s pro-
portional to x.
In general, the variance of any ratio (in this case RM) can be obtained
by "plugging" in Yy - RMx1 = 81 for g in V(Y) regardless of the type

of sampling that has been used, {i.e.,

2

X N z1

V(R

This can be seen by examining

: RE, R
E(R, - R,) = E( ;”x)z - e 2

X+6x




where 6x = x - X
Then the mean square error is the value at © = 1 of the function
Y’Rx{") 2

X+08x

£(0) = E(

Developing Taylor's expansion of f(0) we get

- _ -2 - - 2. -
E(y-R,x) 2E[(y-R,x) "6x]
2 e Ry
B Ry =g - o e

A first approximation to the mean square error is obtained by retaining

only the first term which is of order %u A second approximation is
obtained by retaining both terms.
6.1.3 Mean of Ratios

The total is estimated by

Y=rX wherer = 1 Ir
n i
However, the behavior of the ri's may be erratic and Y i{s very badly

biased.
It should be noted that the use of the covariance in 6.1.1 to obtain

the bias of the ratio can be generalized to any type ratio. Hence,

. y
B(R) = - %-Covc;i » X)) = - %- po(r )o(x,)

X i X
and
[B(RY| <
o(ri) C.V.(xi)

However, the bias of the total Y is obtained as

B(Y) | < C.V. (x,)
o(ri)i

- - _ o(r)
but o(Y) = X o(r) = X » replacing o(ri) above
n
. B Q) <
* o - - C.V.(x)
/n o(Y)' 1

and |BLY)

LR I C.V. (x,).
o(Y)
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That is, the bias as a proportion increases with vn . Consequently,
RM is much preferred to R in estimating the population total Y even
though the variance is of about. the same magnitude. The approximate

variance can be obtained by "plugging" in yi-ﬁx = ai for yq to find the

variance as was done for V(RM) earlier. Howeve:, we shall return to
the consideration of r, when we seek approximately unbiased estimators
of ratios.

Unbiased Ratio Estimation

In view of the fact that, under simple random sampling, the ratio

estinator Y = X% is biased, we¢ wish to consider modifying the sampling
x

procedure so the same estimator becomes unbiased. This can be accomplished
by selecting the sample with probability proportionate to its apgregate
size. This can be best done by selecting the first unit in the sample

with pp to x and the other (n-1) units with equal probabilities without
replacement. Under this procedure of selection, the probability of

selecting a particular sample(s) of size n is given by

I’x I°x

- i _ (n-1)!(R-n)! b

P(Sn? X (N—l) (N-1)! £xi
n-1

6.2.1 The Estimator of the Pophlation Total
- L% -
e Xgmomxl
i
which can be shown to be unbiased since the expectation over all possible

sarples

. S Iy . 5 LY
ECY) = zn X « — i . L% - zn i Y
) x1 X(N-l) (N-l)
n-1 n-1

6.2.2 The Population Variance

Using the most general form given on page 11, Section 4.1.4 for

unbiased estimator

P N,
viY) = z 72 P(s,) - v2

4= 1
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- - 2
X NT (%) 2
-2 I 2 -y
(N—l) z xi
n-1

which 1s zero 1f Yyq is proportibnate to x In the varizance P(Si) is

1.
the same as P(Sn) for a particular sample of size n. The total number
of samples of size n is N°.

6.2.3 Sample Estimate of the Variance

An unbiased estimate of the second temm Y2 is given by

/\2 Z'yz 2T vy

Y = I, 19 : P(S.)
(N-l) (N—Z) n
n-1 n-2

Hence

2 )

V(Q) = YY" - Y

i
since ) /AE

Et? - Y3 = E(¥Y) - v?

= V(Y)
The estimator of the variance may assume negative values for some of the

Sn samples.

6.3 Approximately Unbiased Ratio Estimators
We ppw return to the ratio estimators considered in 6.1 and try
to remove the bias. This work follows that of Hartley and many others.

Ve consider r

[ae ]

\
la]
<

i

L —

Xy

"
3 |

and remove the bias.
6.3.1 An Unbiased Estimator of the Ponulation Mean (X known)
bA
Cov(;— . xi)

E(y,) 1
E(ri) = E(xi) - E(xi)
Yy
. Cov(;; , xi)
E(ri) - - =
X X
—— - — Yy
E(Xr) = X E(ri) =Y - Cov(;— . xi)
i

From earlier results we note that



S§ and Si are estimated unbiasedly. Also,
S2 - L1 T(y, +x --Y-)-()2 is estimated unbiasedly by
y+x N-1 i i1
2 1 =2
Sy+x — i (yi i y-x)°, i.e.,
S2 + 82 + 2 I(Y,-Y)(X,~X) is estinated unbiasedly by
y X N-1 { i i ) :
2 2 2 - - -
Sy +85 +—7 i (y4=y) (x;=x)
Yy - -
y N(;— - P\)(x:l - X)
cecovt , x,) = 1 .-
x, ' 71 N~-1 N
i
is estimated unbiasedly by
CL - 5 (x5
— - r)(x,~x
T N 1 _N-1
1 n-1 N

Hence the mean is estimated unbiasedly by

2, == N-1 RS v G
Y Xr + N (z . nrx)
i
Or
2, o=  N-l
Y* = Xr + —ﬁ—-;:— (y - r x) [Hartley-Ross]

Consequently an unbiased estimator of RM is available upon dividing
¥’ by X.

N Y
.

Ry ™
The variance for large N is given by

2

V(?) = %-[Si + iz i -2R Cov(y,x)] + ——~ n(n =) [S x + Covz(r,x)]
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However, the second term is usually negligible and the large sample

approximation to the variance of the ratio takes the usual form.

R sZ + 1’125’2c - 2§pSny
V(RY) = 2

6.3.2 An Unbiased Estimator for RM for Larpe n X unknown)

. . CtvE,x
D = - —X
x X X
x,-X
‘Assuming N+ and 6xi - is small then it can be shown that
X
s - y
Cov(% , X) = 1 Cov(;—} , xi)
x n i
If C1 + C2 = 1, then v,
COV(— ’ x)
- y Y *4
E(CT+Cy L) == - =
x X X
and determine C's such that C1 + %-Cz = 0, Solving these two equations
for C, and C, we obtain
1 2
1 n
1% s S T

Therefore an unbiased estimator of

= RM is

[

Pee o M_ ¥y 1 =
L Vi e e
X
This 1s unbiased only as far as the approximation of the covariances
is correct. An alternative derivation is also available for an

approximate unbiased estimator of + This development follows from

> |

6.3.1 where X is replaced by x. If N is large in the expression on page 7

for the Hartley-Ross estimator, then

e 4l L E-D
X
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which reduces to Hgf (%) L .

n-1
However, this 1s an approximately unbiased estimator which is an

improvement over %- if the cocfficient of variation of x is small
x

because the bias is now of a smaller order.
The difference in the variance of RM and'Rﬁ is
2 2

i - &

2 -
)Sy = 2pS.S5, (R,~R)
2

V(R - V(R = -
nX
[(R-8) - (R-8) )52

n¥?

where B 1is the regression coefficient of y on x. Consequently, for
large n ve see iﬁ will be more efficient than ﬁM if and only if B is
nearer to R than to RM. If the two ratio are equal, the two variances
are equal. In practice, it will be unlikely that this will be known.
6.3.3 Quenouille Method of Bias Reduction

A random sample of size 2n {s split at random into two subsamples
each of size n., Based on the two subsamples and the entire sample,

we construct an estimator of the ratio

y y 3

R.o=W, L4+w 2 +a-w-w)l

Q l; 2:-‘ 12;

1 2
which simplifies because of equal sample sizes so Wl = Wz = W hence

5,3 -
RQ-w_—1+w_—2+(1-2m-‘_L
x, X, x

The bias in the estimate to the first degree approximation will be
zero if

w__-(N-_Zn_z_
2N

Hence, an approximately unbiased ratio estimator is
poefm2) ¥ o) 1 (ve2n) Y2
x

Q N 2N % 2N %
1 2

N



6-10

&zi_l_'_l._.]:._.g.
x 2% 2 %
1 2
With some effort, it can be shown that the mean square error of R is

Q
approxinated by

M.S.E.(RQ) = (E X

2 1)(?02 [ci + c: - 2pC,C,]
where C; and Ci are the square coefficients of variation of y and x.
Since this approximation is of the same order as the M.S.E.(R), this
latter estimator may be preferred. To estimate the mean Y, we still
require knowledge of X.

The Quenouille method is probably best when we use groups of size

one, that is, the estimator becomes

el ol .y i
Q - n
x i n- - xi

However, the variance nust be obtained by Taylor's Expansion.

6.3.4 Mickey's Estimator ~ A peneralized estimator of the mean

N-a [
N{(n-a) yn

wvhere the choice of a(zu) leads to a specific estimator.

N-n
-a(g) + an - No-o) [y - a(@) x ]

wu = a(%u) X +

18 Yy
(A) Let a(za) -5 b =
i
71
ifa=1 a(g ) = —
a
1l
y y
1 H-1 - 1 -
Then Wl % X+ R D) [ 0" % n xn]

Averaging over all possible selection of units

-1 0
Wl-x-n-z — +

(y - r x) [Hartley-Ross]
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(B) Llet a # 1, then a(zu) in the estimator becomes r, and
W -rx+(“'°‘)“( -rx)

a N(n-a) Yn o n

Averaging over all samples of (:)

For a = n-1, we probably have the best estimator

* - =z, (N-n¥l)n - - =
wn-l rn-lx + N (yn - rn-lxn)

If X is normal and regression passes through origin this estimator
is more efficient than liartley-Ross.

6.3.5 The Product Estimator
Although similar to the ratio estimator, it is much less frequently

used. Generally, the mean per establishment is desired and we wish to

estimate estimator of the mean in EPS-WOR is:

i=5.x®

LR

which is biased, but useful for many purposes.
The bias is given by

N-n
Bias (y.x) ( ) oxy - (Nn ) paxoy .

The approximate variance is given by:
1
v = 3G + V@ + 8% VHVED )P

In the product estimator the position of X is in the denominator while

in the ratio estimator X is in the numerator. The product estimator
depends on a negative correlation between y and x to be more efficient
than the simple estimator of ?. The sample variance can be obtained

by using analogous sample estimators for the parameters. The approximate

variance is:
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+ 2

A 2 - 2
VD) = D IS, + 5 Sy

s
(7]
TR
w
—

Ratio Estimator in Multistage Sampling
We consider the ratio estimator

-

RM = %- where Y and X are unbiased estimators of the totals for the
X

sampling scheme employed.
The variance of the ratio estimator is obtained by "plugging" in

¥ - in = Bi for Yy in the formula for the variance of a total, V(Y),

~n aa

resulting in V(RM) = %5 V(Y-RX).
X

6.4.1 Two Stage Sampling - EPS~WOR at both stages

The totals Y and X are estimated by the method of 3.1.1l., that is

Y=—=1 Miyi
Hence 2
M m 2
1 N 1 i, .2 N n, 1 - = . 22
V(R) %2 s -5 Sg v Q- 5o PO-REY + RK
1 1 i
wvhere
2
Sni L(yge = RyXge — ¥y R Ry X))

and

Y - iﬂ X -%I(Yi-ﬁﬂxi)
Ratio Estimator in Double Sampling

It happens frequently that the population mean X is not known,
hence the usual ratio estimate ﬁMi cannot be made. It is common in
such a situation to use the technique known as double sampling. The
technique consist in taking a large sample of size n” to estimate the
population mean i (assuming X is cheaper to observe than Y) while a
subsample of size n is drawn from n” to observe the characteristic y
under study. The simplest estimate of the mean is the usual biased
ratio estimator. A
6.5.1 The Classical Ratio: Y ' = RM X, -

<1

vhere RM = :E- is based on the small sample of size n. The relative
X
n
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bias of this estimator is:

BED = @ -3 -o 0,C,)
vhere Cx and Cy are the coefficients of variation. The bias is
negligible if the sample size n is sufficiently large so C; is small.
It will be zero if the regression of y on x is linear and passes
through the origin.

The variance of %' may be more efficient than the estimate of f

based on the small sample n., The variance is given by:

2

VE°) = (l--l-,)(sz-i- 252 _ 0SS )+ (l-l‘)s
n n y X y x n ny

vhich will be smaller than the variance of

oG
V(Y)) ifpcx>'2-.

6.5.2 An Unbiased Ratio-Type Estimate

S n(n’-1)

n'n n“(n-1) (yn T T xn)

and the variance is approximated by

s2

vy = ¢ -1, (55 + R 62 -wRo 5,5p) + 2%
Regression Type Estimators

The ratio estimator is best when the relationship between y and x
is a straight line through the origin, so y - kx = 0. If the relation-
ship is of the type y - kx = a, it is more appropriate to try an
estimator based on differences of the form ¥y - kxi PR Such
estimators are called difference estimators or the "working" regression
slope theory. The value k is determined or guessed a priori and we
expect the V(u) to be less than the V(¥).

6.6.1 Difference Estimation - EPS- WOR

This unbiased estimator is called a regression estimator only

because it can be put in the form
;k.;"'k(i";)
which resembles a regression estimator evaluated at X. Now the variance

of ;k equal the variance of u regardless of the sarpling scheme, i.e.
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V(;k) = V(u). The standard formulas which apply to u, all apply to ;k'
Further
2
V(ui) = V(yi) + k V(xi) - 2k Cov(yi,x

and e s2e? sk ks s
VG) = G

g

X Yy
n

The estimate of k is determined a priori and must not be revised after
sampli: ¢ has begun. The value of k which will minimize V(;) is

eS
k=g= ETJL the population regression coefficient.
x

The difference estimator is superior to the simple average y if

S
k Si (k - 2 EX) < 0 or k(k - 23)<0. That is, 1f k lies between 0 and 28.
x

If we consider the ratio of the difference between V(ﬁ) and V(Emin)
divided by V(umin) we obtain

2 -
(%'- 1)2 -E—E- 2e. Ifve can specify © = .1 and p = ,7, then
1-p

2
|- = [ 222D 54 & should be between .68 and 1.32.

(o}

6.6.2 Difference Estimation in Stratified Sampling

A different value of k can be used in each stratum, i.e., we denote

the value as kh for the hth stratum.

Yni = Yht T %n %hit
The population total is:

L
U=Y -2 khxh for L strata
h

and the mecan:

X
N

«
n
<1
1
>

LN
+ ﬁ ﬁh khih where ih is known.

<
=
L}
=)



6.7

6-15

6.6.3 Regression Estimation

Instead of determining k a priori, the population regression co-
efficient B Is estimated from‘the sample. The sample estimate of 8 is

£°(x,-x) (y,-y)
b = 1 1

. -2
z (x:l x)
and the estimator is
;B =y - b(x-X)
Since b is a random variable, exact expressions for the expected value
and the variance of the regression estimator are hard to find. The
large sample approximation to the variance is
2 2.2

2 2
S (1-p7) S + 8 S - ZSDSxSy

v = y =
V(YB) n n

Multivariate Auxiliary Data
Instead of a single x variable, we now consider two or more x's.
6.7.1 Difference Estimators

Consider forming a difference estimator for the mean of y based
on 2ach of the x-variables, and then combining them using appropriate
weights. We form each estimator of y as

-X) i.l,ZOIP

Let Wi be weights adding to one., Then

P
y= Zwiti is an unbiased estimator of Y. Its variance is given by
V(y) = LT W W Cov(t t,) Chapter 1.

Defining suv as the covariance between u and v and letting 0,1,..P stand

for the variates yl,xl, xz,...xP respectively, we have

k,S,, = k

Covltyst) = Jat (Spg = KySoq = ky Sgq * kgky §y9)

An unbiased estimator of the variance is given by
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n P

“ly,- L w k (x 2
3 gm1

1
n-1

J

6.7.2 Ratio Estimation

vG) = %))

13" x4

We form ratio estimators instead of diffcrence estimators as in
P
the preceding section and weight these together so Zwi-l.
- P - ~
yRM = xwixi RM
i
and
V(yRM) = II WW, xixj Cov(R\i ,RH )
i3
The estimator is biased and the expression for the variance is only
approximate in the same way that RH and V(RM) vere,
6.7.3 Mickeys Estimator

a
Let - -
g(xi-xu)(yi-ya)
a(Z ) =
@ - .2
I(x,-x )
2 i a )
6.7.4 Remark: The cstimators Y, %-i, y-k(x-X) and ;-b(§-i) all belong

x
to the class of estimators ;—h(§-i) where h is a random variable

converging to some finite value. Thus, we have:

h =0 for the estimator y,

h =L for the estimator RM'

x

h = k for the difference estimater,

h =Db for the regression estimator.
Alternative Uses of Auxiliary Information

To this point, we have employed auxiliary information specifically
in three different ways: (1) Constructing the estimator, (2) Construc-
tion of strata, and (3) Assigning selection probabilities to sampling
units. A brief summary of these methods of improving the efficiency
is now presented.
6.8.2 Choice of Estimator

To facilitate comparisons, the estimators of the population total

tre stated in,a slightly modified form.
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1. Simple: N[(1) (¥) + 0(X-0))

2, Classical Ratio:  N{(0)(y) +-f— (X-0)]
X

3. Regression: N[(1) (¥) + b(R-%)]

4., Difference: N[(1)(¥) + by(X-x)]

5. Product: N[(0) (3) + ;i(% - 0)]

In considering the problem of estimating the total from a sample, what
is required besides the sample means y?

(1) For the simple estimator, we need only N,

(2) For the ratio estimator, we need only X and nbt N since X = NX,

(3) For the regression estimator, we need to know both N and X (or X),

(4) For the difference estimator, we need to know N, X and bo,

(5) For the product estimator, we need to know N and X.

It is of some importance to realize that the total cannot be estimated
unless number of units in the frame, N, is known with the exception of
the ratio estimator which is, in general, biased.

The efficiency of these estimators for moderate size samples (biases
negligible) depends on the magnitude of the variances. Consequently,
variance efficiency of an estimator A compared to B is defined as follows:

vE(a/B) = 2EBL
Where estimator A will be relatively more efficient than B if the ratio
is greater than 1, The efficiency of estimators 1, 2, and 3 above are
compared for the special case where VAR(X) & Var(Y). The variance

efficiencies under this condition are:

1
2 -
and
. . 1
VE(3/1) = - -
1-p
Therefore, the ratio estimator is always more efficient than the simple
estimator wvhenever p>(%) %%?% =-% » and the regression estimator is always

more efficient than the simple estimator when p>0. In gencral, the
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